Python Neural Network Libraries

View 51 business solutions

Browse free open source Python Neural Network Libraries and projects below. Use the toggles on the left to filter open source Python Neural Network Libraries by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Orchestrate Your AI Agents with Zenflow Icon
    Orchestrate Your AI Agents with Zenflow

    The multi-agent workflow engine for modern teams. Zenflow executes coding, testing, and verification with deep repo awareness

    Zenflow orchestrates AI agents like a real engineering system. With parallel execution, spec-driven workflows, and deep multi-repo understanding, agents plan, implement, test, and verify end-to-end. Upgrade to AI workflows that work the way your team does.
    Try free now
  • 1
    SVoice (Speech Voice Separation)

    SVoice (Speech Voice Separation)

    We provide a PyTorch implementation of the paper Voice Separation

    SVoice is a PyTorch-based implementation of Facebook Research’s study on speaker voice separation as described in the paper “Voice Separation with an Unknown Number of Multiple Speakers.” This project presents a deep learning framework capable of separating mixed audio sequences where several people speak simultaneously, without prior knowledge of how many speakers are present. The model employs gated neural networks with recurrent processing blocks that disentangle voices over multiple computational steps, while maintaining speaker consistency across output channels. Separate models are trained for different speaker counts, and the largest-capacity model dynamically determines the actual number of speakers in a mixture. The repository includes all necessary scripts for training, dataset preparation, distributed training, evaluation, and audio separation.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 2
    Fast Artificial Neural Network Library is a free open source neural network library, which implements multilayer artificial neural networks in C with support for both fully connected and sparsely connected networks. Cross-platform execution in both fixed and floating point are supported. It includes a framework for easy handling of training data sets. It is easy to use, versatile, well documented, and fast. Bindings to more than 15 programming languages are available. An easy to read introduction article and a reference manual accompanies the library with examples and recommendations on how to use the library. Several graphical user interfaces are also available for the library.
    Downloads: 28 This Week
    Last Update:
    See Project
  • 3
    Flax

    Flax

    Flax is a neural network library for JAX

    Flax is a flexible neural-network library for JAX that embraces functional programming while offering ergonomic module abstractions. Its design separates pure computation from state by threading parameter collections and RNGs explicitly, enabling reproducibility, transformation, and easy experimentation with JAX transforms like jit, pmap, and vmap. Modules define parameterized computations, but initialization and application remain side-effect free, which pairs naturally with JAX’s staging and compilation model. Flax emphasizes composability: optimizers, training loops, and checkpointing are provided as examples or utilities rather than monolithic frameworks, encouraging research-friendly customization. The library is widely used in vision, language, and reinforcement learning, often serving as a thin layer atop NumPy-like JAX primitives. Tutorials and examples show patterns for multi-host training, mixed precision, and advanced input pipelines that scale from laptops to TPUs.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 4
    PennyLane

    PennyLane

    A cross-platform Python library for differentiable programming

    A cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural network. Built-in automatic differentiation of quantum circuits, using the near-term quantum devices directly. You can combine multiple quantum devices with classical processing arbitrarily! Support for hybrid quantum and classical models, and compatible with existing machine learning libraries. Quantum circuits can be set up to interface with either NumPy, PyTorch, JAX, or TensorFlow, allowing hybrid CPU-GPU-QPU computations. The same quantum circuit model can be run on different devices. Install plugins to run your computational circuits on more devices, including Strawberry Fields, Amazon Braket, Qiskit and IBM Q, Google Cirq, Rigetti Forest, and the Microsoft QDK.
    Downloads: 4 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 5
    AIMET

    AIMET

    AIMET is a library that provides advanced quantization and compression

    Qualcomm Innovation Center (QuIC) is at the forefront of enabling low-power inference at the edge through its pioneering model-efficiency research. QuIC has a mission to help migrate the ecosystem toward fixed-point inference. With this goal, QuIC presents the AI Model Efficiency Toolkit (AIMET) - a library that provides advanced quantization and compression techniques for trained neural network models. AIMET enables neural networks to run more efficiently on fixed-point AI hardware accelerators. Quantized inference is significantly faster than floating point inference. For example, models that we’ve run on the Qualcomm® Hexagon™ DSP rather than on the Qualcomm® Kryo™ CPU have resulted in a 5x to 15x speedup. Plus, an 8-bit model also has a 4x smaller memory footprint relative to a 32-bit model. However, often when quantizing a machine learning model (e.g., from 32-bit floating point to an 8-bit fixed point value), the model accuracy is sacrificed.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 6
    SFD

    SFD

    S³FD: Single Shot Scale-invariant Face Detector, ICCV, 2017

    S³FD (Single Shot Scale-invariant Face Detector) is a real-time face detection framework designed to handle faces of various sizes with high accuracy using a single deep neural network. Developed by Shifeng Zhang, S³FD introduces a scale-compensation anchor matching strategy and enhanced detection architecture that makes it especially effective for detecting small faces—a long-standing challenge in face detection research. The project builds upon the SSD framework in Caffe, with modifications tailored for face detection tasks. It includes training scripts, evaluation code, and pre-trained models that achieve strong results on popular benchmarks such as AFW, PASCAL Face, FDDB, and WIDER FACE. The framework is optimized for speed and accuracy, making it suitable for both academic research and practical applications in computer vision.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    CNN for Image Retrieval
    cnn-for-image-retrieval is a research-oriented project that demonstrates the use of convolutional neural networks (CNNs) for image retrieval tasks. The repository provides implementations of CNN-based methods to extract feature representations from images and use them for similarity-based retrieval. It focuses on applying deep learning techniques to improve upon traditional handcrafted descriptors by learning features directly from data. The code includes training and evaluation scripts that can be adapted for custom datasets, making it useful for experimenting with retrieval systems in computer vision. By leveraging CNN architectures, the project showcases how learned embeddings can capture semantic similarity across varied images. This resource serves as both an educational reference and a foundation for further exploration in image retrieval research.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    Haiku

    Haiku

    JAX-based neural network library

    Haiku is a library built on top of JAX designed to provide simple, composable abstractions for machine learning research. Haiku is a simple neural network library for JAX that enables users to use familiar object-oriented programming models while allowing full access to JAX’s pure function transformations. Haiku is designed to make the common things we do such as managing model parameters and other model state simpler and similar in spirit to the Sonnet library that has been widely used across DeepMind. It preserves Sonnet’s module-based programming model for state management while retaining access to JAX’s function transformations. Haiku can be expected to compose with other libraries and work well with the rest of JAX. Similar to Sonnet modules, Haiku modules are Python objects that hold references to their own parameters, other modules, and methods that apply functions on user inputs.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    Neural Network Visualization

    Neural Network Visualization

    Project for processing neural networks and rendering to gain insights

    nn_vis is a minimalist visualization tool for neural networks written in Python using OpenGL and Pygame. It provides an interactive, graphical representation of how data flows through neural network layers, offering a unique educational experience for those new to deep learning or looking to explain it visually. By animating input, weights, activations, and outputs, the tool demystifies neural network operations and helps users intuitively grasp complex concepts. Its lightweight codebase is great for customization and teaching purposes.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Lightspeed golf course management software Icon
    Lightspeed golf course management software

    Lightspeed Golf is all-in-one golf course management software to help courses simplify operations, drive revenue and deliver amazing golf experiences.

    From tee sheet management, point of sale and payment processing to marketing, automation, reporting and more—Lightspeed is built for the pro shop, restaurant, back office, beverage cart and beyond.
    Learn More
  • 10
    PyG

    PyG

    Graph Neural Network Library for PyTorch

    PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data. It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of easy-to-use mini-batch loaders for operating on many small and single giant graphs, multi GPU-support, DataPipe support, distributed graph learning via Quiver, a large number of common benchmark datasets (based on simple interfaces to create your own), the GraphGym experiment manager, and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds. All it takes is 10-20 lines of code to get started with training a GNN model (see the next section for a quick tour).
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    Stanza

    Stanza

    Stanford NLP Python library for many human languages

    Stanza is a collection of accurate and efficient tools for the linguistic analysis of many human languages. Starting from raw text to syntactic analysis and entity recognition, Stanza brings state-of-the-art NLP models to languages of your choosing. Stanza is a Python natural language analysis package. It contains tools, which can be used in a pipeline, to convert a string containing human language text into lists of sentences and words, to generate base forms of those words, their parts of speech and morphological features, to give a syntactic structure dependency parse, and to recognize named entities. The toolkit is designed to be parallel among more than 70 languages, using the Universal Dependencies formalism. Stanza is built with highly accurate neural network components that also enable efficient training and evaluation with your own annotated data.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    Differentiable Neural Computer

    Differentiable Neural Computer

    A TensorFlow implementation of the Differentiable Neural Computer

    The Differentiable Neural Computer (DNC), developed by Google DeepMind, is a neural network architecture augmented with dynamic external memory, enabling it to learn algorithms and solve complex reasoning tasks. Published in Nature in 2016 under the paper “Hybrid computing using a neural network with dynamic external memory,” the DNC combines the pattern recognition power of neural networks with a memory module that can be written to and read from in a differentiable way. This allows the model to learn how to store and retrieve information across long time horizons, much like a traditional computer. The architecture consists of modular components including an access module for managing memory operations, a controller (often an LSTM or feedforward network) for issuing read/write commands, and submodules for temporal linkage and memory allocation tracking.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    MMDeploy

    MMDeploy

    OpenMMLab Model Deployment Framework

    MMDeploy is an open-source deep learning model deployment toolset. It is a part of the OpenMMLab project. Models can be exported and run in several backends, and more will be compatible. All kinds of modules in the SDK can be extended, such as Transform for image processing, Net for Neural Network inference, Module for postprocessing and so on. Install and build your target backend. ONNX Runtime is a cross-platform inference and training accelerator compatible with many popular ML/DNN frameworks. Please read getting_started for the basic usage of MMDeploy.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    Mixup-CIFAR10

    Mixup-CIFAR10

    mixup: Beyond Empirical Risk Minimization

    mixup-cifar10 is the official PyTorch implementation of “mixup: Beyond Empirical Risk Minimization” (Zhang et al., ICLR 2018), a foundational paper introducing mixup, a simple yet powerful data augmentation technique for training deep neural networks. The core idea of mixup is to generate synthetic training examples by taking convex combinations of pairs of input samples and their labels. By interpolating both data and labels, the model learns smoother decision boundaries and becomes more robust to noise and adversarial examples. This repository implements mixup for the CIFAR-10 dataset, showcasing its effectiveness in improving generalization, stability, and calibration of neural networks. The approach acts as a regularizer, encouraging linear behavior in the feature space between samples, which helps reduce overfitting and enhance performance on unseen data.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    PyTorch Book

    PyTorch Book

    PyTorch tutorials and fun projects including neural talk

    This is the corresponding code for the book "The Deep Learning Framework PyTorch: Getting Started and Practical", but it can also be used as a standalone PyTorch Getting Started Guide and Tutorial. The current version of the code is based on pytorch 1.0.1, if you want to use an older version please git checkout v0.4or git checkout v0.3. Legacy code has better python2/python3 compatibility, CPU/GPU compatibility test. The new version of the code has not been fully tested, it has been tested under GPU and python3. But in theory there shouldn't be too many problems on python2 and CPU. The basic part (the first five chapters) explains the content of PyTorch. This part introduces the main modules in PyTorch and some tools commonly used in deep learning. For this part of the content, Jupyter Notebook is used as a teaching tool here, and readers can modify and run with notebooks and repeat experiments.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    Feed-forward neural network for python
    ffnet is a fast and easy-to-use feed-forward neural network training solution for python. Many nice features are implemented: arbitrary network connectivity, automatic data normalization, very efficient training tools, network export to fortran code. Now ffnet has also a GUI called ffnetui.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    NeMo is a high-performance spiking neural network simulator which simulates networks of Izhikevich neurons on CUDA-enabled GPUs. NeMo is a C++ class library, with additional interfaces for pure C, Python, and Matlab.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    AdaNet

    AdaNet

    Fast and flexible AutoML with learning guarantees

    AdaNet is a TensorFlow framework for fast and flexible AutoML with learning guarantees. AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet builds on recent AutoML efforts to be fast and flexible while providing learning guarantees. Importantly, AdaNet provides a general framework for not only learning a neural network architecture but also for learning to the ensemble to obtain even better models. At each iteration, it measures the ensemble loss for each candidate, and selects the best one to move onto the next iteration. Adaptive neural architecture search and ensemble learning in a single train call. Regression, binary and multi-class classification, and multi-head task support. A tf.estimator.Estimator API for training, evaluation, prediction, and serving models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Alpa

    Alpa

    Training and serving large-scale neural networks

    Alpa is a system for training and serving large-scale neural networks. Scaling neural networks to hundreds of billions of parameters has enabled dramatic breakthroughs such as GPT-3, but training and serving these large-scale neural networks require complicated distributed system techniques. Alpa aims to automate large-scale distributed training and serving with just a few lines of code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Compare GAN

    Compare GAN

    Compare GAN code

    compare_gan is a research codebase that standardizes how Generative Adversarial Networks are trained and evaluated so results are comparable across papers and datasets. It offers reference implementations for popular GAN architectures and losses, plus a consistent training harness to remove confounding differences in optimization or preprocessing. The library’s evaluation suite includes widely used metrics and diagnostics that quantify sample quality, diversity, and mode coverage. With configuration-driven experiments, you can sweep hyperparameters, run ablations, and log results at scale. The goal is to turn GAN experimentation into a disciplined, repeatable process rather than a patchwork of scripts. It also provides baselines strong enough to serve as starting points for new ideas without re-implementing the world.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    CoreNet

    CoreNet

    CoreNet: A library for training deep neural networks

    CoreNet is Apple’s internal deep learning framework for distributed neural network training, designed for high scalability, low-latency communication, and strong hardware efficiency. It focuses on enabling large-scale model training across clusters of GPUs and accelerators by optimizing data flow and parallelism strategies. CoreNet provides abstractions for data, tensor, and pipeline parallelism, allowing models to scale without code duplication or heavy manual configuration. Its distributed runtime manages synchronization, load balancing, and mixed-precision computation to maximize throughput while minimizing communication bottlenecks. CoreNet integrates tightly with Apple’s proprietary ML stack and hardware, serving as the foundation for research in computer vision, language models, and multimodal systems within Apple AI. The framework includes monitoring tools, fault tolerance mechanisms, and efficient checkpointing for massive training runs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    DeepXDE

    DeepXDE

    A library for scientific machine learning & physics-informed learning

    DeepXDE is a library for scientific machine learning and physics-informed learning. DeepXDE includes the following algorithms. Physics-informed neural network (PINN). Solving different problems. Solving forward/inverse ordinary/partial differential equations (ODEs/PDEs) [SIAM Rev.] Solving forward/inverse integro-differential equations (IDEs) [SIAM Rev.] fPINN: solving forward/inverse fractional PDEs (fPDEs) [SIAM J. Sci. Comput.] NN-arbitrary polynomial chaos (NN-aPC): solving forward/inverse stochastic PDEs (sPDEs) [J. Comput. Phys.] PINN with hard constraints (hPINN): solving inverse design/topology optimization [SIAM J. Sci. Comput.] Residual-based adaptive sampling [SIAM Rev., arXiv] Gradient-enhanced PINN (gPINN) [Comput. Methods Appl. Mech. Eng.] PINN with multi-scale Fourier features [Comput. Methods Appl. Mech. Eng.]
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    FairChem

    FairChem

    FAIR Chemistry's library of machine learning methods for chemistry

    FAIRChem is a unified library for machine learning in chemistry and materials, consolidating data, pretrained models, demos, and application code into a single, versioned toolkit. Version 2 modernizes the stack with a cleaner core package and breaking changes relative to V1, focusing on simpler installs and a stable API surface for production and research. The centerpiece models (e.g., UMA variants) plug directly into the ASE ecosystem via a FAIRChem calculator, so users can run relaxations, molecular dynamics, spin-state energetics, and surface catalysis workflows with the same pretrained network by switching a task flag. Tasks span heterogeneous domains—catalysis (OC20-style), inorganic materials (OMat), molecules (OMol), MOFs (ODAC), and molecular crystals (OMC)—allowing one model family to serve many simulations. The README provides quick paths for pulling models (e.g., via Hugging Face access), then running energy/force predictions on GPU or CPU.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Fairseq

    Fairseq

    Facebook AI Research Sequence-to-Sequence Toolkit written in Python

    Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling and other text generation tasks. We provide reference implementations of various sequence modeling papers. Recent work by Microsoft and Google has shown that data parallel training can be made significantly more efficient by sharding the model parameters and optimizer state across data parallel workers. These ideas are encapsulated in the new FullyShardedDataParallel (FSDP) wrapper provided by fairscale. Fairseq can be extended through user-supplied plug-ins. Models define the neural network architecture and encapsulate all of the learnable parameters. Criterions compute the loss function given the model outputs and targets. Tasks store dictionaries and provide helpers for loading/iterating over Datasets, initializing the Model/Criterion and calculating the loss.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Forecasting Best Practices

    Forecasting Best Practices

    Time Series Forecasting Best Practices & Examples

    Time series forecasting is one of the most important topics in data science. Almost every business needs to predict the future in order to make better decisions and allocate resources more effectively. This repository provides examples and best practice guidelines for building forecasting solutions. The goal of this repository is to build a comprehensive set of tools and examples that leverage recent advances in forecasting algorithms to build solutions and operationalize them. Rather than creating implementations from scratch, we draw from existing state-of-the-art libraries and build additional utilities around processing and featuring the data, optimizing and evaluating models, and scaling up to the cloud. The examples and best practices are provided as Python Jupyter notebooks and R markdown files and a library of utility functions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next