mixup-cifar10 is the official PyTorch implementation of “mixup: Beyond Empirical Risk Minimization” (Zhang et al., ICLR 2018), a foundational paper introducing mixup, a simple yet powerful data augmentation technique for training deep neural networks. The core idea of mixup is to generate synthetic training examples by taking convex combinations of pairs of input samples and their labels. By interpolating both data and labels, the model learns smoother decision boundaries and becomes more...