2 projects for "wavelets image processing" with 2 filters applied:

  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • Enterprise-Class Managed File Transfer. Icon
    Enterprise-Class Managed File Transfer.

    For organizations that need to automate secure file transfers to protect sensitive data.

    Diplomat MFT by Coviant Software is a secure, reliable managed file transfer solution designed to simplify and automate SFTP, FTPS, and HTTPS file transfers. Built for seamless integration, Diplomat MFT works across major cloud storage platforms, including AWS S3, Azure Blob, Google Cloud, Oracle Cloud, SharePoint, Dropbox, Box, and more.
    Learn More
  • 1
    CRFasRNN

    CRFasRNN

    Semantic image segmentation method described in the ICCV 2015 paper

    CRF-RNN is a deep neural architecture that integrates fully connected Conditional Random Fields (CRFs) with Convolutional Neural Networks (CNNs) by reformulating mean-field CRF inference as a Recurrent Neural Network. This fusion enables end-to-end training via backpropagation for semantic image segmentation tasks, eliminating the need for separate, offline post-processing steps. Our work allows computers to recognize objects in images, what is distinctive about our work is that we also recover the 2D outline of objects. Currently we have trained this model to recognize 20 classes. This software allows you to test our algorithm on your own images – have a try and see if you can fool it, if you get some good examples you can send them to us. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    DeepDream

    DeepDream

    This repository contains IPython Notebook with sample code

    ...The notebook shows how to take a trained vision model and iteratively amplify patterns the network detects, producing the hallmark surreal, hallucinatory visuals. It walks through loading a pretrained network, selecting layers and channels to maximize, computing gradients with respect to the input image, and applying multi-scale “octave” processing to reveal fine and coarse patterns. The code is intentionally compact and exploratory, encouraging users to tweak layers, step sizes, and scales to influence the aesthetic. Although minimal, it illustrates important concepts like feature visualization, activation maximization, and the effect of different receptive fields on the final image.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next