Showing 3 open source projects for "patterns"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Automated RMM Tools | RMM Software Icon
    Automated RMM Tools | RMM Software

    Proactively monitor, manage, and support client networks with ConnectWise Automate

    Out-of-the-box scripts. Around-the-clock monitoring. Unmatched automation capabilities. Start doing more with less and exceed service delivery expectations.
    Learn More
  • 1
    Stock prediction deep neural learning

    Stock prediction deep neural learning

    Predicting stock prices using a TensorFlow LSTM

    ...The fluctuations in stock prices are driven by the forces of supply and demand, which can be unpredictable at times. To identify patterns and trends in stock prices, deep learning techniques can be used for machine learning. Long short-term memory (LSTM) is a type of recurrent neural network (RNN) that is specifically designed for sequence modeling and prediction.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Flax

    Flax

    Flax is a neural network library for JAX

    ...The library is widely used in vision, language, and reinforcement learning, often serving as a thin layer atop NumPy-like JAX primitives. Tutorials and examples show patterns for multi-host training, mixed precision, and advanced input pipelines that scale from laptops to TPUs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    DeepDream

    DeepDream

    This repository contains IPython Notebook with sample code

    DeepDream is a small, educational repository that accompanies Google’s original “Inceptionism” blog post by providing a runnable IPython/Jupyter notebook that demonstrates how to “dream” through a convolutional neural network. The notebook shows how to take a trained vision model and iteratively amplify patterns the network detects, producing the hallmark surreal, hallucinatory visuals. It walks through loading a pretrained network, selecting layers and channels to maximize, computing gradients with respect to the input image, and applying multi-scale “octave” processing to reveal fine and coarse patterns. The code is intentionally compact and exploratory, encouraging users to tweak layers, step sizes, and scales to influence the aesthetic. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next