Showing 11 open source projects for "data collection algorithm"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Simple, Secure Domain Registration Icon
    Simple, Secure Domain Registration

    Get your domain at wholesale price. Cloudflare offers simple, secure registration with no markups, plus free DNS, CDN, and SSL integration.

    Register or renew your domain and pay only what we pay. No markups, hidden fees, or surprise add-ons. Choose from over 400 TLDs (.com, .ai, .dev). Every domain is integrated with Cloudflare's industry-leading DNS, CDN, and free SSL to make your site faster and more secure. Simple, secure, at-cost domain registration.
    Sign up for free
  • 1
    Stanza

    Stanza

    Stanford NLP Python library for many human languages

    Stanza is a collection of accurate and efficient tools for the linguistic analysis of many human languages. Starting from raw text to syntactic analysis and entity recognition, Stanza brings state-of-the-art NLP models to languages of your choosing. Stanza is a Python natural language analysis package. It contains tools, which can be used in a pipeline, to convert a string containing human language text into lists of sentences and words, to generate base forms of those words, their parts...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    Gen.jl

    Gen.jl

    A general-purpose probabilistic programming system

    ... for writing down generative models, inference models, variational families, and proposal distributions using ordinary code. But it also lets users migrate parts of their model or inference algorithm to specialized modeling languages for which it can generate especially fast code. Users can also hand-code parts of their models that demand better performance. Neural network inference is fast, but can be inaccurate on out-of-distribution data, and requires expensive training.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    Jraph

    Jraph

    A Graph Neural Network Library in Jax

    ... compilation. The library includes a comprehensive set of utilities for batching, padding, masking, and partitioning graph data, making it ideal for distributed and large-scale GNN experiments. Jraph also comes with a model zoo—a collection of forkable reference implementations of common message-passing GNN architectures, such as Graph Networks, Graph Convolutional Networks, and Graph Attention Networks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    MMdnn

    MMdnn

    Tools to help users inter-operate among deep learning frameworks

    ..., which means you can train a model with one framework and deploy it with another. During the model conversion, we generate some code snippets to simplify later retraining or inference. We provide a model collection to help you find some popular models. We provide a model visualizer to display the network architecture more intuitively. We provide some guidelines to help you deploy DL models to another hardware platform.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    Forecasting Best Practices

    Forecasting Best Practices

    Time Series Forecasting Best Practices & Examples

    Time series forecasting is one of the most important topics in data science. Almost every business needs to predict the future in order to make better decisions and allocate resources more effectively. This repository provides examples and best practice guidelines for building forecasting solutions. The goal of this repository is to build a comprehensive set of tools and examples that leverage recent advances in forecasting algorithms to build solutions and operationalize them. Rather than...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    The Neural Process Family

    The Neural Process Family

    This repository contains notebook implementations

    Neural Processes (NPs) is a collection of interactive Jupyter/Colab notebook implementations developed by Google DeepMind, showcasing three foundational probabilistic machine learning models: Conditional Neural Processes (CNPs), Neural Processes (NPs), and Attentive Neural Processes (ANPs). These models combine the strengths of neural networks and stochastic processes, allowing for flexible function approximation with uncertainty estimation. They can learn distributions over functions from data...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Swift AI

    Swift AI

    The Swift machine learning library

    Swift AI is a high-performance deep learning library written entirely in Swift. We currently offer support for all Apple platforms, with Linux support coming soon. Swift AI includes a collection of common tools used for artificial intelligence and scientific applications. A flexible, fully-connected neural network with support for deep learning. Optimized specifically for Apple hardware, using advanced parallel processing techniques. We've created some example projects to demonstrate the usage...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8

    Random Bits Forest

    RBF: a Strong Classifier/Regressor for Big Data

    We present a classification and regression algorithm called Random Bits Forest (RBF). RBF integrates neural network (for depth), boosting (for wideness) and random forest (for accuracy). It first generates and selects ~10,000 small three-layer threshold random neural networks as basis by gradient boosting scheme. These binary basis are then feed into a modified random forest algorithm to obtain predictions. In conclusion, RBF is a novel framework that performs strongly especially on data...
    Downloads: 8 This Week
    Last Update:
    See Project
  • 9
    nunn

    nunn

    This is an implementation of a machine learning library in C++17

    nunn is a collection of ML algorithms and related examples written in modern C++17.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Connect every part of your business to one bank account Icon
    Connect every part of your business to one bank account

    North One is a business banking app that integrates cash flow, payments, and budgeting to turn your North One Account into one Connected Bank Account

    North One is proudly built for small businesses, startups and freelancers across America. Make payments easily, keep tabs on your money and put your finances on autopilot through smart integrations with the tools you’re already using. North One was built to make managing money easy so you can focus on running your business. No more branches. No more lines. No more paperwork. Get complete access to your North One Account from your phone or computer, wherever your business takes you. Create Envelopes for taxes, payroll, rent, and anything else automatically.
    Get started for free.
  • 10
    Neural Libs

    Neural Libs

    Neural network library for developers

    This project includes the implementation of a neural network MLP, RBF, SOM and Hopfield networks in several popular programming languages. The project also includes examples of the use of neural networks as function approximation and time series prediction. Includes a special program makes it easy to test neural network based on training data and the optimization of the network.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11

    bioluminescence

    A java library for polymorphic genome assembly.

    Bioluminescence is a java library for facilitating de novo genome assembly in the context of reads sampled from a single highly-polymorphic diploid individual. Bioluminescence implements a novel algorithm which uses an artificial neural network to classify contigs in a genome assembly as haplotype-specific or not-haplotype-specific. It then uses this information to partition the original input read set into two subsets, each of which has been enriched for one of the haplotypes. Initial results...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next