Open Source Windows Natural Language Processing (NLP) Tools

Natural Language Processing (NLP) Tools for Windows

View 40 business solutions

Browse free open source Natural Language Processing (NLP) tools and projects for Windows below. Use the toggles on the left to filter open source Natural Language Processing (NLP) tools by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Enterprise-grade ITSM, for every business Icon
    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity.

    Freshservice is an intuitive, AI-powered platform that helps IT, operations, and business teams deliver exceptional service without the usual complexity. Automate repetitive tasks, resolve issues faster, and provide seamless support across the organization. From managing incidents and assets to driving smarter decisions, Freshservice makes it easy to stay efficient and scale with confidence.
    Try it Free
  • 1
    MeCab is a fast and customizable Japanese morphological analyzer. MeCab is designed for generic purpose and applied to variety of NLP tasks, such as Kana-Kanji conversion. MeCab provides parameter estimation functionalities based on CRFs and HMM
    Leader badge
    Downloads: 2,864 This Week
    Last Update:
    See Project
  • 2
    Virastyar

    Virastyar

    Virastyar is an spell checker for low-resource languages

    Virastyar is a free and open-source (FOSS) spell checker. It stands upon the shoulders of many free/libre/open-source (FLOSS) libraries developed for processing low-resource languages, especially Persian and RTL languages Publications: Kashefi, O., Nasri, M., & Kanani, K. (2010). Towards Automatic Persian Spell Checking. SCICT. Kashefi, O., Sharifi, M., & Minaie, B. (2013). A novel string distance metric for ranking Persian respelling suggestions. Natural Language Engineering, 19(2), 259-284. Rasooli, M. S., Kahefi, O., & Minaei-Bidgoli, B. (2011). Effect of adaptive spell checking in Persian. In NLP-KE Contributors: Omid Kashefi Azadeh Zamanifar Masoumeh Mashaiekhi Meisam Pourafzal Reza Refaei Mohammad Hedayati Kamiar Kanani Mehrdad Senobari Sina Iravanin Mohammad Sadegh Rasooli Mohsen Hoseinalizadeh Mitra Nasri Alireza Dehlaghi Fatemeh Ahmadi Neda PourMorteza
    Leader badge
    Downloads: 354 This Week
    Last Update:
    See Project
  • 3
    OpenVINO

    OpenVINO

    OpenVINO™ Toolkit repository

    OpenVINO™ is an open-source toolkit for optimizing and deploying AI inference. Boost deep learning performance in computer vision, automatic speech recognition, natural language processing and other common tasks. Use models trained with popular frameworks like TensorFlow, PyTorch and more. Reduce resource demands and efficiently deploy on a range of Intel® platforms from edge to cloud. This open-source version includes several components: namely Model Optimizer, OpenVINO™ Runtime, Post-Training Optimization Tool, as well as CPU, GPU, MYRIAD, multi device and heterogeneous plugins to accelerate deep learning inferencing on Intel® CPUs and Intel® Processor Graphics. It supports pre-trained models from the Open Model Zoo, along with 100+ open source and public models in popular formats such as TensorFlow, ONNX, PaddlePaddle, MXNet, Caffe, Kaldi.
    Downloads: 19 This Week
    Last Update:
    See Project
  • 4
    ChatGLM.cpp

    ChatGLM.cpp

    C++ implementation of ChatGLM-6B & ChatGLM2-6B & ChatGLM3 & GLM4(V)

    ChatGLM.cpp is a C++ implementation of the ChatGLM-6B model, enabling efficient local inference without requiring a Python environment. It is optimized for running on consumer hardware.
    Downloads: 9 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    Docspell

    Docspell

    Assist in organizing your piles of documents

    Docspell is a personal document organizer. Or sometimes called a "Document Management System" (DMS). You'll need a scanner to convert your papers into files. Docspell can then assist in organizing the resulting mess. It can unify your files from scanners, emails, and other sources. It is targeted for home use, i.e. families, households, and also for smaller groups/companies. You can associate tags, set correspondent,s and lots of other predefined and custom metadata. If your documents are associated with such metadata, you can quickly find them later using the search feature. However adding this manually is a tedious task. Docspell can help by suggesting correspondents, guessing tags or finding dates using machine learning. It can learn metadata from existing documents and find things using NLP. This makes adding metadata to your documents a lot easier. For machine learning, it relies on the free (GPL) Stanford Core NLP library.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 6
    NVIDIA NeMo

    NVIDIA NeMo

    Toolkit for conversational AI

    NVIDIA NeMo, part of the NVIDIA AI platform, is a toolkit for building new state-of-the-art conversational AI models. NeMo has separate collections for Automatic Speech Recognition (ASR), Natural Language Processing (NLP), and Text-to-Speech (TTS) models. Each collection consists of prebuilt modules that include everything needed to train on your data. Every module can easily be customized, extended, and composed to create new conversational AI model architectures. Conversational AI architectures are typically large and require a lot of data and compute for training. NeMo uses PyTorch Lightning for easy and performant multi-GPU/multi-node mixed-precision training. Supported models: Jasper, QuartzNet, CitriNet, Conformer-CTC, Conformer-Transducer, Squeezeformer-CTC, Squeezeformer-Transducer, ContextNet, LSTM-Transducer (RNNT), LSTM-CTC. NGC collection of pre-trained speech processing models.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 7
    MARF is a general cross-platform framework with a collection of algorithms for audio (voice, speech, and sound) and natural language text analysis and recognition along with sample applications (identification, NLP, etc.) of its use, implemented in Java.
    Downloads: 47 This Week
    Last Update:
    See Project
  • 8
    Botkit

    Botkit

    Tool for building chat bots, apps and custom integrations

    An open source developer tool for building chat bots, apps and custom integrations for major messaging platforms. Part of the Microsoft Bot Framework. We love bots, and want to make them easy and fun to build! Include Botkit into your Node application and boot up a controller that will define your bot's behaviors. In this case, we're setting up a bot to use with the Bot Framework Emulator. Tell the bot to listen for users saying "hello," and use `bot.reply` to send an immediate response. Start a conversation, then queue up multiple messages to send, including a prompt sent using `convo.ask()` which allows your bot to capture user input and use it. Botkit is just one part of a bigger set of developer tools and SDKs that encompass the Microsoft Bot Framework. The Bot Framework SDK provides the base upon which Botkit is built. It is available in multiple programming languages!
    Downloads: 6 This Week
    Last Update:
    See Project
  • 9
    Transformers.jl

    Transformers.jl

    Julia Implementation of Transformer models

    Transformers.jl is a Julia library that implements Transformer models for natural language processing tasks. Inspired by architectures like BERT, GPT, and T5, the library offers a modular and flexible interface for building, training, and using transformer-based deep learning models. It supports training from scratch and fine-tuning pretrained models, and integrates with Flux.jl for automatic differentiation and optimization.
    Downloads: 6 This Week
    Last Update:
    See Project
  • Test your software product anywhere in the world Icon
    Test your software product anywhere in the world

    Get feedback from real people across 190+ countries with the devices, environments, and payment instruments you need for your perfect test.

    Global App Testing is a managed pool of freelancers used by Google, Meta, Microsoft, and other world-beating software companies.
    Try us today.
  • 10
    spaCy

    spaCy

    Industrial-strength Natural Language Processing (NLP)

    spaCy is a library built on the very latest research for advanced Natural Language Processing (NLP) in Python and Cython. Since its inception it was designed to be used for real world applications-- for building real products and gathering real insights. It comes with pretrained statistical models and word vectors, convolutional neural network models, easy deep learning integration and so much more. spaCy is the fastest syntactic parser in the world according to independent benchmarks, with an accuracy within 1% of the best available. It's blazing fast, easy to install and comes with a simple and productive API.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 11
    Apache OpenNLP

    Apache OpenNLP

    Apache OpenNLP

    Apache OpenNLP is a machine learning-based NLP library that provides tools for text-processing tasks such as tokenization, sentence segmentation, and named entity recognition.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 12
    Ciphey

    Ciphey

    Decrypt encryptions without knowing the key or cipher

    Fully automated decryption/decoding/cracking tool using natural language processing & artificial intelligence, along with some common sense. You don't know, you just know it's possibly encrypted. Ciphey will figure it out for you. Ciphey can solve most things in 3 seconds or less. Ciphey aims to be a tool to automate a lot of decryptions & decodings such as multiple base encodings, classical ciphers, hashes or more advanced cryptography. If you don't know much about cryptography, or you want to quickly check the ciphertext before working on it yourself, Ciphey is for you. The technical part. Ciphey uses a custom-built artificial intelligence module (AuSearch) with a Cipher Detection Interface to approximate what something is encrypted with. And then a custom-built, customizable natural language processing Language Checker Interface, which can detect when the given text becomes plaintext.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 13
    Datasets

    Datasets

    Hub of ready-to-use datasets for ML models

    Datasets is a library for easily accessing and sharing datasets, and evaluation metrics for Natural Language Processing (NLP), computer vision, and audio tasks. Load a dataset in a single line of code, and use our powerful data processing methods to quickly get your dataset ready for training in a deep learning model. Backed by the Apache Arrow format, process large datasets with zero-copy reads without any memory constraints for optimal speed and efficiency. We also feature a deep integration with the Hugging Face Hub, allowing you to easily load and share a dataset with the wider NLP community. There are currently over 2658 datasets, and more than 34 metrics available. Datasets naturally frees the user from RAM memory limitation, all datasets are memory-mapped using an efficient zero-serialization cost backend (Apache Arrow). Smart caching: never wait for your data to process several times.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 14
    Machine Learning PyTorch Scikit-Learn

    Machine Learning PyTorch Scikit-Learn

    Code Repository for Machine Learning with PyTorch and Scikit-Learn

    Initially, this project started as the 4th edition of Python Machine Learning. However, after putting so much passion and hard work into the changes and new topics, we thought it deserved a new title. So, what’s new? There are many contents and additions, including the switch from TensorFlow to PyTorch, new chapters on graph neural networks and transformers, a new section on gradient boosting, and many more that I will detail in a separate blog post. For those who are interested in knowing what this book covers in general, I’d describe it as a comprehensive resource on the fundamental concepts of machine learning and deep learning. The first half of the book introduces readers to machine learning using scikit-learn, the defacto approach for working with tabular datasets. Then, the second half of this book focuses on deep learning, including applications to natural language processing and computer vision.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 15
    AWS Toolkit for Visual Studio Code

    AWS Toolkit for Visual Studio Code

    Local Lambda debug, CodeWhisperer, SAM/CFN syntax, etc.

    The AWS Toolkit extension for Visual Studio Code enables you to interact with Amazon Web Services (AWS). Try the AWS Code Sample Catalog to start coding with the AWS SDK. The AWS Explorer provides access to the AWS services that you can work with when using the Toolkit. To see the AWS Explorer, choose the AWS icon in the Activity bar. The Developer Tools panel is a section for developer-focused tooling curated for working in an IDE. The Developer Tools panel can be found underneath the AWS Explorer when the AWS icon is selected in the Activity bar. The AWS CDK Explorer enables you to work with AWS Cloud Development Kit (CDK) applications. It shows a top-level view of your CDK applications that have been synthesized in your workspace. Amazon CodeWhisperer provides inline code suggestions using machine learning and natural language processing on the contents of your current file. Supported languages include Java, Python and Javascript.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 16
    compromise

    compromise

    Modest natural-language processing

    Language is complicated and there's a gazillion words. Compromise is a javascript library that interprets and pre-parses text and makes some reasonable decisions so things are way easier. Compromise tries its best to parse text. it is small, quick, and often good-enough. It is not as smart as you'd think. Conjugate and negate verbs in any tense. Play between plural, singular and possessive forms. Interpret plain-text numbers. Handle implicit terms. Use it on the client-side or as an es-module. compromise is 180kb (minified). It's pretty fast. It can run on keypress. It works mainly by conjugating all forms of a basic word list. Decide how words get interpreted or make heavier changes with a compromise-plugin. Parse text without running POS-tagging. Pre-parse any match statements for faster lookups. It is not the most accurate, or clever nlp library, but found its niche as an easy, small library that can run everywhere.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 17
    AI learning

    AI learning

    AiLearning, data analysis plus machine learning practice

    We actively respond to the Research Open Source Initiative (DOCX) . Open source today is not just open source, but datasets, models, tutorials, and experimental records. We are also exploring other categories of open source solutions and protocols. I hope you will understand this initiative, combine this initiative with your own interests, and do what you can. Everyone's tiny contributions, together, are the entire open source ecosystem. We are iBooker, a large open-source community, we-media, and online earning community, with a QQ group of more than 10,000 people and at least 10,000 subscribers. The number of Github Stars exceeds 60k, and it ranks in the top 100 of all Github organizations. The daily up of all its websites exceeds 4k, and the peak of Alexa ranking is 20k. Our core members are certified as CSDN blog experts and short-book programmers as excellent authors. We have established ApacheCN, a non-profit document, and tutorial translation project.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    AdalFlow

    AdalFlow

    The library to build & auto-optimize LLM applications

    AdalFlow is a framework for building AI-powered automation workflows, enabling users to design and execute intelligent automation pipelines with minimal coding.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    Diffgram

    Diffgram

    Training data (data labeling, annotation, workflow) for all data types

    From ingesting data to exploring it, annotating it, and managing workflows. Diffgram is a single application that will improve your data labeling and bring all aspects of training data under a single roof. Diffgram is world’s first truly open source training data platform that focuses on giving its users an unlimited experience. This is aimed to reduce your data labeling bills and increase your Training Data Quality. Training Data is the art of supervising machines through data. This includes the activities of annotation, which produces structured data; ready to be consumed by a machine learning model. Annotation is required because raw media is considered to be unstructured and not usable without it. That’s why training data is required for many modern machine learning use cases including computer vision, natural language processing and speech recognition.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    Duckling

    Duckling

    Language, engine, and tooling for testing composable language rules

    Duckling is a Haskell library developed by Facebook for parsing and normalizing natural language expressions into structured data. It supports a wide range of entities such as dates, times, durations, distances, temperatures, numbers, and currencies. Designed for use in conversational agents, chatbots, and natural language processing applications, Duckling converts fuzzy user input into a consistent and machine-readable format. It features multi-language support and is widely used in production environments requiring robust entity extraction.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    KoNLPy

    KoNLPy

    Python package for Korean natural language processing

    KoNLPy is a natural language processing (NLP) library for the Korean language, offering tokenization, morphological analysis, and named entity recognition.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    ModelScope

    ModelScope

    Bring the notion of Model-as-a-Service to life

    ModelScope is built upon the notion of “Model-as-a-Service” (MaaS). It seeks to bring together most advanced machine learning models from the AI community, and streamlines the process of leveraging AI models in real-world applications. The core ModelScope library open-sourced in this repository provides the interfaces and implementations that allow developers to perform model inference, training and evaluation. In particular, with rich layers of API abstraction, the ModelScope library offers unified experience to explore state-of-the-art models spanning across domains such as CV, NLP, Speech, Multi-Modality, and Scientific-computation. Model contributors of different areas can integrate models into the ModelScope ecosystem through the layered APIs, allowing easy and unified access to their models. Once integrated, model inference, fine-tuning, and evaluations can be done with only a few lines of code.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    PaperAI

    PaperAI

    Semantic search and workflows for medical/scientific papers

    PaperAI is an open-source framework for searching and analyzing scientific papers, particularly useful for researchers looking to extract insights from large-scale document collections.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    Spark NLP

    Spark NLP

    State of the Art Natural Language Processing

    Experience the power of large language models like never before, unleashing the full potential of Natural Language Processing (NLP) with Spark NLP, the open source library that delivers scalable LLMs. The full code base is open under the Apache 2.0 license, including pre-trained models and pipelines. The only NLP library built natively on Apache Spark. The most widely used NLP library in the enterprise. Spark ML provides a set of machine learning applications that can be built using two main components, estimators and transformers. The estimators have a method that secures and trains a piece of data to such an application. The transformer is generally the result of a fitting process and applies changes to the target dataset. These components have been embedded to be applicable to Spark NLP. Pipelines are a mechanism for combining multiple estimators and transformers in a single workflow. They allow multiple chained transformations along a machine-learning task.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    Weaviate

    Weaviate

    Weaviate is a cloud-native, modular, real-time vector search engine

    Weaviate in a nutshell: Weaviate is a vector search engine and vector database. Weaviate uses machine learning to vectorize and store data, and to find answers to natural language queries. With Weaviate you can also bring your custom ML models to production scale. Weaviate in detail: Weaviate is a low-latency vector search engine with out-of-the-box support for different media types (text, images, etc.). It offers Semantic Search, Question-Answer-Extraction, Classification, Customizable Models (PyTorch/TensorFlow/Keras), and more. Built from scratch in Go, Weaviate stores both objects and vectors, allowing for combining vector search with structured filtering with the fault-tolerance of a cloud-native database, all accessible through GraphQL, REST, and various language clients.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.