• Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    Stanza

    Stanza

    Stanford NLP Python library for many human languages

    ...It contains tools, which can be used in a pipeline, to convert a string containing human language text into lists of sentences and words, to generate base forms of those words, their parts of speech and morphological features, to give a syntactic structure dependency parse, and to recognize named entities. The toolkit is designed to be parallel among more than 70 languages, using the Universal Dependencies formalism. Stanza is built with highly accurate neural network components that also enable efficient training and evaluation with your own annotated data.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 2
    Colossal-AI

    Colossal-AI

    Making large AI models cheaper, faster and more accessible

    ...However, distributed training, especially model parallelism, often requires domain expertise in computer systems and architecture. It remains a challenge for AI researchers to implement complex distributed training solutions for their models. Colossal-AI provides a collection of parallel components for you. We aim to support you to write your distributed deep learning models just like how you write your model on your laptop.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    FARM

    FARM

    Fast & easy transfer learning for NLP

    ...With FARM you can build fast proofs-of-concept for tasks like text classification, NER or question answering and transfer them easily into production. Easy fine-tuning of language models to your task and domain language. AMP optimizers (~35% faster) and parallel preprocessing (16 CPU cores => ~16x faster). Modular design of language models and prediction heads. Switch between heads or combine them for multitask learning. Full Compatibility with HuggingFace Transformers' models and model hub. Smooth upgrading to newer language models. Integration of custom datasets via Processor class. Powerful experiment tracking & execution.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    XLM (Cross-lingual Language Model)

    XLM (Cross-lingual Language Model)

    PyTorch original implementation of Cross-lingual Language Model

    XLM (Cross-lingual Language Model) is a family of multilingual pretraining methods that align representations across languages to enable strong zero-shot transfer. It popularized objectives like Masked Language Modeling (MLM) across many languages and Translation Language Modeling (TLM) that jointly trains on parallel sentence pairs to tighten cross-lingual alignment. Using a shared subword vocabulary, XLM learns language-agnostic features that work well for classification and sequence labeling tasks such as XNLI, NER, and POS without target-language supervision. The repository provides preprocessing pipelines, training code, and fine-tuning scripts so you can reproduce benchmark results or adapt models to your own multilingual corpora. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Run applications fast and securely in a fully managed environment Icon
    Run applications fast and securely in a fully managed environment

    Cloud Run is a fully-managed compute platform that lets you run your code in a container directly on top of scalable infrastructure.

    Run frontend and backend services, batch jobs, deploy websites and applications, and queue processing workloads without the need to manage infrastructure.
    Try for free
  • 5

    popt4jlib

    Parallel Optimization Library for Java

    ...A fast parallel implementation of the network simplex method, and some full-fledged parallel/distributed MIP solvers will be added in the next version. In general, emphasis is given in improving the efficiency of the algorithms in shared-memory models via java threads, since multi-core machines are so wide-spread today.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Osman Arabic Text Readability

    Osman Arabic Text Readability

    Open Source tool for Arabic text readability

    ...All the readability metrics mentioned in Section \ref{calcRead} are included within the open source code, they all work with vocalised and non-vocalised text but based our results presented here we recommend adding the diacritics in by using the addTashkeel() method. See the files sections for the vocalised version of UN Arabic English parallel paragraphs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7

    English-Khmer S. Machine Translation

    English-Khmer Automatic Statistic Machine Translation (SMT)

    Automatic Machine Translation from English to Khmer project is the first effort in Natural Language Processing field for translating English to Khmer (Cambodian) language. This project uses Domy CE, an open source SMT toolkit, for training parallel corpus and web technologies such as Python, Apache2, HTML, XML, and XSLT for developing web-based application. This project is developed by Ms. Kim Sokphyrum (DU) and Ms. Suos Samak (Jamia), under Supervision of Mr. Javier Sola, a Program Manager at Open Institute (OI), Cambodia, Dr. Vasudha Bhatnagar, an Assistant professor and a Head of Computer Science at University of Delhi (DU), New Delhi, India. and Dr. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    CRFSharp

    CRFSharp

    CRFSharp is a .NET(C#) implementation of Conditional Random Field

    ...CRF#'s mainly algorithm is the same as CRF++ written by Taku Kudo. It encodes model parameters by L-BFGS. Moreover, it has many significant improvement than CRF++, such as totally parallel encoding, optimizing memory usage and so on. Currently, when training corpus, compared with CRF++, CRF# can make full use of multi-core CPUs and only uses very low memory, and memory grow is very smoothly and slowly while amount of training corpus, tags increase. with multi-threads process, CRF# is more suitable for large data and tags training than CRF++ now. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Sanchay
    Sanchay is a collection of tools and APIs for language researchers. It has some implementations of NLP algorithms, some flexible APIs, several user friendly annotation interfaces and Sanchay Query Language for language resources.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Run your private office with the ONLYOFFICE Icon
    Run your private office with the ONLYOFFICE

    Secure office and productivity apps

    A Comprehensive Alternative to Office 365 for Business
    Learn More
  • Previous
  • You're on page 1
  • Next