Showing 2 open source projects for "parallel genetic algorithm"

View related business solutions
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • Loan management software that makes it easy. Icon
    Loan management software that makes it easy.

    Ideal for lending professionals who are looking for a feature rich loan management system

    Bryt Software is ideal for lending professionals who are looking for a feature rich loan management system that is intuitive and easy to use. We are 100% cloud-based, software as a service. We believe in providing our customers with fair and honest pricing. Our monthly fees are based on your number of users and we have a minimal implementation charge.
    Learn More
  • 1

    popt4jlib

    Parallel Optimization Library for Java

    popt4jlib is an open-source parallel optimization library for the Java programming language supporting both shared memory and distributed message passing models. Implements a number of meta-heuristic algorithms for Non-Linear Programming, including Genetic Algorithms, Differential Evolution, Evolutionary Algorithms, Simulated Annealing, Particle Swarm Optimization, Firefly Algorithm, Monte-Carlo Search, Local Search algorithms, Gradient-Descent-based algorithms, as well as some well-known network flow and other graph algorithms. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    CRFSharp

    CRFSharp

    CRFSharp is a .NET(C#) implementation of Conditional Random Field

    CRFSharp(aka CRF#) is a .NET(C#) implementation of Conditional Random Fields, an machine learning algorithm for learning from labeled sequences of examples. It is widely used in Natural Language Process (NLP) tasks, for example: word breaker, postagging, named entity recognized, query chunking and so on. CRF#'s mainly algorithm is the same as CRF++ written by Taku Kudo. It encodes model parameters by L-BFGS. Moreover, it has many significant improvement than CRF++, such as totally parallel encoding, optimizing memory usage and so on. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next