Showing 3 open source projects for "java machine learning library"

View related business solutions
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    OpenNN - Open Neural Networks Library

    OpenNN - Open Neural Networks Library

    Machine learning algorithms for advanced analytics

    OpenNN is a software library written in C++ for advanced analytics. It implements neural networks, the most successful machine learning method. Some typical applications of OpenNN are business intelligence (customer segmentation, churn prevention…), health care (early diagnosis, microarray analysis…) and engineering (performance optimization, predictive maitenance…).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    OpenPR
    OpenPR stands for Open Pattern Recognition project and is intended to be an open source library for algorithms of image processing, computer vision, natural language processing, pattern recognition, machine learning and the related fields.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Phrasal

    Phrasal

    Statistical phrase-based machine translation system

    Stanford Phrasal is a state-of-the-art statistical phrase-based machine translation system, written in Java. At its core, it provides much the same functionality as the core of Moses. Distinctive features include: providing an easy to use API for implementing new decoding model features, the ability to translating using phrases that include gaps (Galley et al. 2010), and conditional extraction of phrase-tables and lexical reordering models. Developed by The Natural Language Processing Group...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next