Showing 31 open source projects for "python framework"

View related business solutions
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    SimCSE

    SimCSE

    SimCSE: Simple Contrastive Learning of Sentence Embeddings

    SimCSE (Simple Contrastive Learning of Sentence Embeddings) is a machine learning framework for training sentence embeddings using contrastive learning. It improves representation learning for NLP tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Self-Attentive Parser

    Self-Attentive Parser

    High-accuracy NLP parser with models for 11 languages

    LightAutoML is an automated machine learning (AutoML) framework developed by Sberbank AI Lab, designed to facilitate the development of machine learning models with minimal human intervention.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    TextBrewer

    TextBrewer

    A PyTorch-based knowledge distillation toolkit

    TextBrewer is a PyTorch-based model distillation toolkit for natural language processing. It includes various distillation techniques from both NLP and CV field and provides an easy-to-use distillation framework, which allows users to quickly experiment with the state-of-the-art distillation methods to compress the model with a relatively small sacrifice in the performance, increasing the inference speed and reducing the memory usage.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    fastNLP

    fastNLP

    fastNLP: A Modularized and Extensible NLP Framework

    fastNLP is a lightweight framework for natural language processing (NLP), the goal is to quickly implement NLP tasks and build complex models. A unified Tabular data container simplifies the data preprocessing process. Built-in Loader and Pipe for multiple datasets, eliminating the need for preprocessing code. Various convenient NLP tools, such as Embedding loading (including ELMo and BERT), intermediate data cache, etc.. Provide a variety of neural network components and recurrence models...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 5
    DeText

    DeText

    A Deep Neural Text Understanding Framework

    DeText is a Deep Text understanding framework for NLP-related ranking, classification, and language generation tasks. It leverages semantic matching using deep neural networks to understand member intents in search and recommender systems. As a general NLP framework, DeText can be applied to many tasks, including search & recommendation ranking, multi-class classification and query understanding tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    PyText

    PyText

    A natural language modeling framework based on PyTorch

    PyText is a deep-learning based NLP modeling framework built on PyTorch. PyText addresses the often-conflicting requirements of enabling rapid experimentation and of serving models at scale. It achieves this by providing simple and extensible interfaces and abstractions for model components, and by using PyTorch’s capabilities of exporting models for inference via the optimized Caffe2 execution engine. We use PyText at Facebook to iterate quickly on new modeling ideas and then seamlessly...
    Downloads: 0 This Week
    Last Update:
    See Project