Showing 7 open source projects for "super resolution ai"

View related business solutions
  • User Testing Platform | Testeum Icon
    User Testing Platform | Testeum

    Get worldwide testers to review your software, app or website! Quickly find bugs and usability issues in less than 48 hours.

    Tired of bugs and poor UX going unnoticed despite thorough internal testing? Testeum is the SaaS crowdtesting platform that connects mobile and web app creators with carefully selected testers based on your criteria.
    Learn More
  • Payroll Services for Small Businesses | QuickBooks Icon
    Payroll Services for Small Businesses | QuickBooks

    Save 50% off for 3 months with QuickBooks Payroll when you Buy Now

    Easily pay your team and access powerful tools, employee benefits, and supportive experts with the #1 online payroll service provider. Manage payroll and access HR and employee services in one place. Pay your team automatically once your payroll setup is complete. We'll calculate, file, and pay your payroll taxes automatically.
    Learn More
  • 1
    AI Upscaler for Blender

    AI Upscaler for Blender

    AI Upscaler for Blender using Real-ESRGAN

    ... on the CPU. Blender renders a low-resolution image. The Real-ESRGAN Upscaler upscales the low-resolution image to a higher-resolution image. Real-ESRGAN is a deep learning upscaler that uses neural networks to achieve excellent results by adding in detail when it upscales.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    MMEditing

    MMEditing

    MMEditing is a low-level vision toolbox based on PyTorch

    MMEditing is an open-source toolbox for low-level vision. It supports various tasks. MMEditing is a low-level vision toolbox based on PyTorch, supporting super-resolution, inpainting, matting, video interpolation, etc. We decompose the editing framework into different components and one can easily construct a customized editor framework by combining different modules. The toolbox directly supports popular and contemporary inpainting, matting, super-resolution and generation tasks. The toolbox...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    VSGAN

    VSGAN

    VapourSynth Single Image Super-Resolution Generative Adversarial

    Single Image Super-Resolution Generative Adversarial Network (GAN) which uses the VapourSynth processing framework to handle input and output image data. Transform, Filter, or Enhance your input video, or the VSGAN result with VapourSynth, a Script-based NLE. You can chain models or re-run the model twice-over (or more). Have low VRAM? Don’t worry! The Network will be applied in quadrants of the image to reduce up-front VRAM usage. You can use any RGB video input, including float32 (e.g., RGBS...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    Image Super-Resolution (ISR)

    Image Super-Resolution (ISR)

    Super-scale your images and run experiments with Residual Dense

    The goal of this project is to upscale and improve the quality of low-resolution images. This project contains Keras implementations of different Residual Dense Networks for Single Image Super-Resolution (ISR) as well as scripts to train these networks using content and adversarial loss components. Docker scripts and Google Colab notebooks are available to carry training and prediction. Also, we provide scripts to facilitate training on the cloud with AWS and Nvidia-docker with only a few...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Bright Data - All in One Platform for Proxies and Web Scraping Icon
    Bright Data - All in One Platform for Proxies and Web Scraping

    Say goodbye to blocks, restrictions, and CAPTCHAs

    Bright Data offers the highest quality proxies with automated session management, IP rotation, and advanced web unlocking technology. Enjoy reliable, fast performance with easy integration, a user-friendly dashboard, and enterprise-grade scaling. Powered by ethically-sourced residential IPs for seamless web scraping.
    Get Started
  • 5
    GIMP ML

    GIMP ML

    AI for GNU Image Manipulation Program

    This repository introduces GIMP3-ML, a set of Python plugins for the widely popular GNU Image Manipulation Program (GIMP). It enables the use of recent advances in computer vision to the conventional image editing pipeline. Applications from deep learning such as monocular depth estimation, semantic segmentation, mask generative adversarial networks, image super-resolution, de-noising and coloring have been incorporated with GIMP through Python-based plugins. Additionally, operations on images...
    Downloads: 8 This Week
    Last Update:
    See Project
  • 6
    Super-résolution via CNN

    Super-résolution via CNN

    Super resolution using a CNN, based on the work of the DGtal team

    Super-resolution using a CNN, based on the work of the DGtal team. First of all, an Nvidia graphics card (neither AMD nor Intel integrated) is highly recommended to parallelize the CNN. You will then need to install CUDA. No CUDA = dozens of times slower. This program will generate "model_epoch_ .pth" files corresponding to the model at epoch n, in a folder saved_model_u t_bs bs_tbs tbs_lr lr, where corresponds to the scale factor, bsthe size of the training batch, tbsthe size of the test batch...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Exposure

    Exposure

    Learning infinite-resolution image processing with GAN and RL

    Learning infinite-resolution image processing with GAN and RL from unpaired image datasets, using a differentiable photo editing model. ACM Transactions on Graphics (presented at SIGGRAPH 2018) Exposure is originally designed for RAW photos, which assumes 12+ bit color depth and linear "RGB" color space (or whatever we get after demosaicing). jpg and png images typically have only 8-bit color depth (except 16-bit pngs) and the lack of information (dynamic range/activation resolution) may lead...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next