Showing 26 open source projects for "text to code"

View related business solutions
  • Managed MySQL, PostgreSQL, and SQL Databases on Google Cloud Icon
    Managed MySQL, PostgreSQL, and SQL Databases on Google Cloud

    Get back to your application and leave the database to us. Cloud SQL automatically handles backups, replication, and scaling.

    Cloud SQL is a fully managed relational database for MySQL, PostgreSQL, and SQL Server. We handle patching, backups, replication, encryption, and failover—so you can focus on your app. Migrate from on-prem or other clouds with free Database Migration Service. IDC found customers achieved 246% ROI. New customers get $300 in credits plus a 30-day free trial.
    Try Cloud SQL Free
  • Easily Host LLMs and Web Apps on Cloud Run Icon
    Easily Host LLMs and Web Apps on Cloud Run

    Run everything from popular models with on-demand NVIDIA L4 GPUs to web apps without infrastructure management.

    Run frontend and backend services, batch jobs, host LLMs, and queue processing workloads without the need to manage infrastructure. Cloud Run gives you on-demand GPU access for hosting LLMs and running real-time AI—with 5-second cold starts and automatic scale-to-zero so you only pay for actual usage. New customers get $300 in free credit to start.
    Try Cloud Run Free
  • 1
    EasyOCR

    EasyOCR

    Ready-to-use OCR with 80+ supported languages

    Ready-to-use OCR with 80+ supported languages and all popular writing scripts including Latin, Chinese, Arabic, Devanagari, Cyrillic and etc. EasyOCR is a python module for extracting text from image. It is a general OCR that can read both natural scene text and dense text in document. We are currently supporting 80+ languages and expanding. Second-generation models: multiple times smaller size, multiple times faster inference, additional characters and comparable accuracy to the first...
    Downloads: 26 This Week
    Last Update:
    See Project
  • 2
    DocTR

    DocTR

    Library for OCR-related tasks powered by Deep Learning

    ...Seemlessly process documents for Natural Language Understanding tasks: we provide OCR predictors to parse textual information (localize and identify each word) from your documents. Robust 2-stage (detection + recognition) OCR predictors with pretrained parameters. User-friendly, 3 lines of code to load a document and extract text with a predictor. State-of-the-art performances on public document datasets, comparable with GoogleVision/AWS Textract. Easy integration (available templates for browser demo & API deployment). End-to-End OCR is achieved in docTR using a two-stage approach: text detection (localizing words), then text recognition (identify all characters in the word). ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    AutoGluon

    AutoGluon

    AutoGluon: AutoML for Image, Text, and Tabular Data

    AutoGluon enables easy-to-use and easy-to-extend AutoML with a focus on automated stack ensembling, deep learning, and real-world applications spanning image, text, and tabular data. Intended for both ML beginners and experts, AutoGluon enables you to quickly prototype deep learning and classical ML solutions for your raw data with a few lines of code. Automatically utilize state-of-the-art techniques (where appropriate) without expert knowledge. Leverage automatic hyperparameter tuning, model selection/ensembling, architecture search, and data processing. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    OpenCLIP

    OpenCLIP

    An open source implementation of CLIP

    The goal of this repository is to enable training models with contrastive image-text supervision and to investigate their properties such as robustness to distribution shift. Our starting point is an implementation of CLIP that matches the accuracy of the original CLIP models when trained on the same dataset. Specifically, a ResNet-50 model trained with our codebase on OpenAI's 15 million image subset of YFCC achieves 32.7% top-1 accuracy on ImageNet.
    Downloads: 1 This Week
    Last Update:
    See Project
  • $300 in Free Credit for Your Google Cloud Projects Icon
    $300 in Free Credit for Your Google Cloud Projects

    Build, test, and explore on Google Cloud with $300 in free credit. No hidden charges. No surprise bills.

    Launch your next project with $300 in free Google Cloud credit—no hidden charges. Test, build, and deploy without risk. Use your credit across the Google Cloud platform to find what works best for your needs. After your credits are used, continue building with free monthly usage products. Only pay when you're ready to scale. Sign up in minutes and start exploring.
    Start Free Trial
  • 5
    Model Zoo

    Model Zoo

    Please do not feed the models

    FluxML Model Zoo is a collection of demonstration models built with the Flux machine learning library in Julia. The repository provides ready-to-run implementations across multiple domains, including computer vision, natural language processing, and reinforcement learning. Each model is organized into its own project folder with pinned package versions, ensuring reproducibility and stability. The examples serve both as educational tools for learning Flux and as practical starting points for...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    Llama Cookbook

    Llama Cookbook

    Solve end to end problems using Llama model family

    The Llama Cookbook is the official Meta LLaMA guide for inference, fine‑tuning, RAG, and multi-step use-cases. It offers recipes, code samples, and integration examples across provider platforms (WhatsApp, SQL, long context workflows), enabling developers to quickly harness LLaMA models
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    ktrain

    ktrain

    ktrain is a Python library that makes deep learning AI more accessible

    ktrain is a Python library that makes deep learning and AI more accessible and easier to apply. ktrain is a lightweight wrapper for the deep learning library TensorFlow Keras (and other libraries) to help build, train, and deploy neural networks and other machine learning models. Inspired by ML framework extensions like fastai and ludwig, ktrain is designed to make deep learning and AI more accessible and easier to apply for both newcomers and experienced practitioners. With only a few lines...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 8
    segment-geospatial

    segment-geospatial

    A Python package for segmenting geospatial data with the SAM

    The segment-geospatial package draws its inspiration from segment-anything-eo repository authored by Aliaksandr Hancharenka. To facilitate the use of the Segment Anything Model (SAM) for geospatial data, I have developed the segment-anything-py and segment-geospatial Python packages, which are now available on PyPI and conda-forge. My primary objective is to simplify the process of leveraging SAM for geospatial data analysis by enabling users to achieve this with minimal coding effort. I...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    DeepDetect

    DeepDetect

    Deep Learning API and Server in C++14 support for Caffe, PyTorch

    ...While the Open Source Deep Learning Server is the core element, with REST API, and multi-platform support that allows training & inference everywhere, the Deep Learning Platform allows higher level management for training neural network models and using them as if they were simple code snippets. Ready for applications of image tagging, object detection, segmentation, OCR, Audio, Video, Text classification, CSV for tabular data and time series. Neural network templates for the most effective architectures for GPU, CPU, and Embedded devices. Training in a few hours and with small data thanks to 25+ pre-trained models. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Go from Data Warehouse to Data and AI platform with BigQuery Icon
    Go from Data Warehouse to Data and AI platform with BigQuery

    Build, train, and run ML models with simple SQL. Automate data prep, analysis, and predictions with built-in AI assistance from Gemini.

    BigQuery is more than a data warehouse—it's an autonomous data-to-AI platform. Use familiar SQL to train ML models, run time-series forecasts, and generate AI-powered insights with native Gemini integration. Built-in agents handle data engineering and data science workflows automatically. Get $300 in free credit, query 1 TB, and store 10 GB free monthly.
    Try BigQuery Free
  • 10
    Weights and Biases

    Weights and Biases

    Tool for visualizing and tracking your machine learning experiments

    ...Quickly identify model regressions. Use W&B to visualize results in real time, all in a central dashboard. Focus on the interesting ML. Spend less time manually tracking results in spreadsheets and text files. Capture dataset versions with W&B Artifacts to identify how changing data affects your resulting models. Reproduce any model, with saved code, hyperparameters, launch commands, input data, and resulting model weights. Set wandb.config once at the beginning of your script to save your hyperparameters, input settings (like dataset name or model type), and any other independent variables for your experiments. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    MLJAR Studio

    MLJAR Studio

    Python package for AutoML on Tabular Data with Feature Engineering

    We are working on new way for visual programming. We developed a desktop application called MLJAR Studio. It is a notebook-based development environment with interactive code recipes and a managed Python environment. All running locally on your machine. We are waiting for your feedback. The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. It is designed to save time for a data scientist. It abstracts the common way to preprocess the data,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    d2l-zh

    d2l-zh

    Chinese-language edition of Dive into Deep Learning

    d2l‑zh is the Chinese-language edition of Dive into Deep Learning, an interactive, open‑source deep learning textbook that combines code, math, and explanatory text. It features runnable Jupyter notebooks compatible with multiple frameworks (e.g., PyTorch, MXNet, TensorFlow), comprehensive theoretical analysis, and exercises. Widely adopted in over 70 countries and used by more than 500 universities for teaching deep learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    PandaOCR

    PandaOCR

    Multifunctional OCR Image and Text Recognition

    At present, the newly refactored PandaOCR.Pro professional version has been released. It is faster and more stable, with richer interfaces and easier operation. It is recommended for you to use it! The normal version will continue to be maintained, and all interfaces will be retained but no new functions will be added. The reason why the version number of the professional version starts from 5.x is that the normal version will be updated in the future, so a period of version number is...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    Kashgari

    Kashgari

    Kashgari is a production-level NLP Transfer learning framework

    Kashgari is a simple and powerful NLP Transfer learning framework, build a state-of-art model in 5 minutes for named entity recognition (NER), part-of-speech tagging (PoS), and text classification tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    TTS

    TTS

    Deep learning for text to speech

    TTS is a library for advanced Text-to-Speech generation. It's built on the latest research, was designed to achieve the best trade-off among ease-of-training, speed, and quality. TTS comes with pre-trained models, tools for measuring dataset quality, and is already used in 20+ languages for products and research projects. Released models in PyTorch, Tensorflow and TFLite.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    fastNLP

    fastNLP

    fastNLP: A Modularized and Extensible NLP Framework

    fastNLP is a lightweight framework for natural language processing (NLP), the goal is to quickly implement NLP tasks and build complex models. A unified Tabular data container simplifies the data preprocessing process. Built-in Loader and Pipe for multiple datasets, eliminating the need for preprocessing code. Various convenient NLP tools, such as Embedding loading (including ELMo and BERT), intermediate data cache, etc.. Provide a variety of neural network components and recurrence models (covering tasks such as Chinese word segmentation, named entity recognition, syntactic analysis, text classification, text matching, metaphor resolution, summarization, etc.). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Turi Create

    Turi Create

    Simplifies the development of custom machine learning models

    Turi Create simplifies the development of custom machine learning models. You don't have to be a machine learning expert to add recommendations, object detection, image classification, image similarity or activity classification to your app. If you want your app to recognize specific objects in images, you can build your own model with just a few lines of code. Turi Create supports macOS 10.12+, Linux (with glibc 2.10+), Windows 10 (via WSL). Turi Create requires Python 2.7, 3.5, 3.6, 3.7,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Tensor2Tensor

    Tensor2Tensor

    Library of deep learning models and datasets

    Deep Learning (DL) has enabled the rapid advancement of many useful technologies, such as machine translation, speech recognition and object detection. In the research community, one can find code open-sourced by the authors to help in replicating their results and further advancing deep learning. However, most of these DL systems use unique setups that require significant engineering effort and may only work for a specific problem or architecture, making it hard to run new experiments and...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    textgenrnn

    textgenrnn

    Easily train your own text-generating neural network

    With textgenrnn you can easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code. A modern neural network architecture that utilizes new techniques as attention-weighting and skip-embedding to accelerate training and improve model quality. Train on and generate text at either the character-level or word-level. Configure RNN size, the number of RNN layers, and whether to use bidirectional RNNs. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    PyTorch Natural Language Processing

    PyTorch Natural Language Processing

    Basic Utilities for PyTorch Natural Language Processing (NLP)

    ...It’s built with the very latest research in mind, and was designed from day one to support rapid prototyping. PyTorch-NLP comes with pre-trained embeddings, samplers, dataset loaders, metrics, neural network modules and text encoders. It’s open-source software, released under the BSD3 license. With your batch in hand, you can use PyTorch to develop and train your model using gradient descent. For example, check out this example code for training on the Stanford Natural Language Inference (SNLI) Corpus. Now you've setup your pipeline, you may want to ensure that some functions run deterministically. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    MatchZoo

    MatchZoo

    Facilitating the design, comparison and sharing of deep text models

    The goal of MatchZoo is to provide a high-quality codebase for deep text matching research, such as document retrieval, question answering, conversational response ranking, and paraphrase identification. With the unified data processing pipeline, simplified model configuration and automatic hyper-parameters tunning features equipped, MatchZoo is flexible and easy to use. Preprocess your input data in three lines of code, keep track parameters to be passed into the model. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    easy12306

    easy12306

    Automatic recognition of 12306 verification code

    Automatic recognition of 12306 verification code using machine learning algorithm. Identify never-before-seen pictures.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    PyTorch Book

    PyTorch Book

    PyTorch tutorials and fun projects including neural talk

    This is the corresponding code for the book "The Deep Learning Framework PyTorch: Getting Started and Practical", but it can also be used as a standalone PyTorch Getting Started Guide and Tutorial. The current version of the code is based on pytorch 1.0.1, if you want to use an older version please git checkout v0.4or git checkout v0.3. Legacy code has better python2/python3 compatibility, CPU/GPU compatibility test. The new version of the code has not been fully tested, it has been tested...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    kcws

    kcws

    Deep Learning Chinese Word Segment

    ...Change to the code directory.After installing tensorflow, switch to the kcws code directory. Currently, the custom dictionary is supported in the decoding stage. Please refer to kcws/cc/test_seg.cc for specific usage. The dictionary is in text format.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    nn22 Basic Neural Networks for Octave

    nn22 Basic Neural Networks for Octave

    Simple .m files, Basic Neural Networks study for Octave (or Matlab)

    ...The code is completely open to be modified and may suit several scenarios. The code commenting is verbose, and variables and functions do respect English formatting, so that code may be self explanatory. Messages to the screen are localized, both in English and Spanish, and it is really easy to add another language to the localization.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next
MongoDB Logo MongoDB