Showing 71 open source projects for "python 2"

View related business solutions
  • Auth0 Free: 25K MAUs + 5-Min Setup Icon
    Auth0 Free: 25K MAUs + 5-Min Setup

    Enterprise Auth, Zero Friction: Any Framework • 30+ SDKs • Universal Login

    Production-ready login in 10 lines of code. SSO, MFA & social auth included. Scale seamlessly beyond free tier with Okta’s enterprise security.
    Get Your API Keys
  • Free CRM Software With Something for Everyone Icon
    Free CRM Software With Something for Everyone

    216,000+ customers in over 135 countries grow their businesses with HubSpot

    Think CRM software is just about contact management? Think again. HubSpot CRM has free tools for everyone on your team, and it’s 100% free. Here’s how our free CRM solution makes your job easier.
    Get free CRM
  • 1
    AlphaZero.jl

    AlphaZero.jl

    A generic, simple and fast implementation of Deepmind's AlphaZero

    ...++) and optimized for highly distributed computing environments. This makes them hardly accessible for students, researchers and hackers. Many simple Python implementations can be found on Github, but none of them is able to beat a reasonable baseline on games such as Othello or Connect Four. As an illustration, the benchmark in the README of the most popular of them only features a random baseline, along with a greedy baseline that does not appear to be significantly stronger.
    Downloads: 51 This Week
    Last Update:
    See Project
  • 2
    EasyOCR

    EasyOCR

    Ready-to-use OCR with 80+ supported languages

    Ready-to-use OCR with 80+ supported languages and all popular writing scripts including Latin, Chinese, Arabic, Devanagari, Cyrillic and etc. EasyOCR is a python module for extracting text from image. It is a general OCR that can read both natural scene text and dense text in document. We are currently supporting 80+ languages and expanding. Second-generation models: multiple times smaller size, multiple times faster inference, additional characters and comparable accuracy to the first...
    Downloads: 30 This Week
    Last Update:
    See Project
  • 3
    Lightning Flash

    Lightning Flash

    Flash enables you to easily configure and run complex AI recipes

    Your PyTorch AI Factory, Flash enables you to easily configure and run complex AI recipes for over 15 tasks across 7 data domains. In a nutshell, Flash is the production-grade research framework you always dreamed of but didn't have time to build. All data loading in Flash is performed via a from_* classmethod on a DataModule. Which DataModule to use and which from_* methods are available depends on the task you want to perform. For example, for image segmentation where your data is stored...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 4
    DocTR

    DocTR

    Library for OCR-related tasks powered by Deep Learning

    DocTR provides an easy and powerful way to extract valuable information from your documents. Seemlessly process documents for Natural Language Understanding tasks: we provide OCR predictors to parse textual information (localize and identify each word) from your documents. Robust 2-stage (detection + recognition) OCR predictors with pretrained parameters. User-friendly, 3 lines of code to load a document and extract text with a predictor. State-of-the-art performances on public document...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Bright Data - All in One Platform for Proxies and Web Scraping Icon
    Bright Data - All in One Platform for Proxies and Web Scraping

    Say goodbye to blocks, restrictions, and CAPTCHAs

    Bright Data offers the highest quality proxies with automated session management, IP rotation, and advanced web unlocking technology. Enjoy reliable, fast performance with easy integration, a user-friendly dashboard, and enterprise-grade scaling. Powered by ethically-sourced residential IPs for seamless web scraping.
    Get Started
  • 5
    OpenVINO Training Extensions

    OpenVINO Training Extensions

    Trainable models and NN optimization tools

    OpenVINO™ Training Extensions provide a convenient environment to train Deep Learning models and convert them using the OpenVINO™ toolkit for optimized inference. When ote_cli is installed in the virtual environment, you can use the ote command line interface to perform various actions for templates related to the chosen task type, such as running, training, evaluating, exporting, etc. ote train trains a model (a particular model template) on a dataset and saves results in two files. ote...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    tf2onnx

    tf2onnx

    Convert TensorFlow, Keras, Tensorflow.js and Tflite models to ONNX

    tf2onnx converts TensorFlow (tf-1.x or tf-2.x), keras, tensorflow.js and tflite models to ONNX via command line or python API. Note: tensorflow.js support was just added. While we tested it with many tfjs models from tfhub, it should be considered experimental. TensorFlow has many more ops than ONNX and occasionally mapping a model to ONNX creates issues. tf2onnx will use the ONNX version installed on your system and installs the latest ONNX version if none is found. We support and test ONNX...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    fastai

    fastai

    Deep learning library

    ... of many deep learning and data processing techniques in terms of decoupled abstractions. These abstractions can be expressed concisely and clearly by leveraging the dynamism of the underlying Python language and the flexibility of the PyTorch library. fastai is organized around two main design goals: to be approachable and rapidly productive, while also being deeply hackable and configurable. It is built on top of a hierarchy of lower-level APIs which provide composable building blocks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    DoWhy

    DoWhy

    DoWhy is a Python library for causal inference

    DoWhy is a Python library for causal inference that supports explicit modeling and testing of causal assumptions. DoWhy is based on a unified language for causal inference, combining causal graphical models and potential outcomes frameworks. Much like machine learning libraries have done for prediction, DoWhy is a Python library that aims to spark causal thinking and analysis. DoWhy provides a wide variety of algorithms for effect estimation, causal structure learning, diagnosis of causal...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    pomegranate

    pomegranate

    Fast, flexible and easy to use probabilistic modelling in Python

    ... networks can be dropped into a mixture just as easily as a normal distribution, and hidden Markov models can be dropped into Bayes classifiers to make a classifier over sequences. Together, these two design choices enable a flexibility not seen in any other probabilistic modeling package.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Payroll Services for Small Businesses | QuickBooks Icon
    Payroll Services for Small Businesses | QuickBooks

    Save up to 50% on QuickBooks Online! Keep the Accounting and Book Keeping for your Small Business up to date!

    Easily pay your team and access powerful tools, employee benefits, and supportive experts with the #1 online payroll service provider. Manage payroll and access HR and employee services in one place. Pay your team automatically once your payroll setup is complete. We'll calculate, file, and pay your payroll taxes automatically.
    Learn More
  • 10
    ClearML

    ClearML

    Streamline your ML workflow

    ClearML is an open source platform that automates and simplifies developing and managing machine learning solutions for thousands of data science teams all over the world. It is designed as an end-to-end MLOps suite allowing you to focus on developing your ML code & automation, while ClearML ensures your work is reproducible and scalable. The ClearML Python Package for integrating ClearML into your existing scripts by adding just two lines of code, and optionally extending your experiments...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    openTSNE

    openTSNE

    Extensible, parallel implementations of t-SNE

    openTSNE is a modular Python implementation of t-Distributed Stochasitc Neighbor Embedding (t-SNE) [1], a popular dimensionality-reduction algorithm for visualizing high-dimensional data sets. openTSNE incorporates the latest improvements to the t-SNE algorithm, including the ability to add new data points to existing embeddings [2], massive speed improvements [3] [4] [5], enabling t-SNE to scale to millions of data points, and various tricks to improve the global alignment of the resulting...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    dtreeviz

    dtreeviz

    Python library for decision tree visualization & model interpretation

    A python library for decision tree visualization and model interpretation. Decision trees are the fundamental building block of gradient boosting machines and Random Forests(tm), probably the two most popular machine learning models for structured data. Visualizing decision trees is a tremendous aid when learning how these models work and when interpreting models. The visualizations are inspired by an educational animation by R2D3; A visual introduction to machine learning. Please see How...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Aim

    Aim

    An easy-to-use & supercharged open-source experiment tracker

    Aim logs all your AI metadata (experiments, prompts, etc) enabling a UI to compare & observe them and SDK to query them programmatically. The Aim standard package comes with all integrations. If you'd like to modify the integration and make it custom, create a new integration package and share with others. Aim is an open-source, self-hosted AI Metadata tracking tool designed to handle 100,000s of tracked metadata sequences. The two most famous AI metadata applications are: experiment tracking...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Denoising Diffusion Probabilistic Model

    Denoising Diffusion Probabilistic Model

    Implementation of Denoising Diffusion Probabilistic Model in Pytorch

    Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to generative modeling that may have the potential to rival GANs. It uses denoising score matching to estimate the gradient of the data distribution, followed by Langevin sampling to sample from the true distribution. If you simply want to pass in a folder name and the desired image dimensions, you can use the Trainer class to easily train a model.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Keras Attention Mechanism

    Keras Attention Mechanism

    Attention mechanism Implementation for Keras

    Many-to-one attention mechanism for Keras. We demonstrate that using attention yields a higher accuracy on the IMDB dataset. We consider two LSTM networks: one with this attention layer and the other one with a fully connected layer. Both have the same number of parameters for a fair comparison (250K). The attention is expected to be the highest after the delimiters. An overview of the training is shown below, where the top represents the attention map and the bottom the ground truth...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Haiku

    Haiku

    JAX-based neural network library

    ... DeepMind. It preserves Sonnet’s module-based programming model for state management while retaining access to JAX’s function transformations. Haiku can be expected to compose with other libraries and work well with the rest of JAX. Similar to Sonnet modules, Haiku modules are Python objects that hold references to their own parameters, other modules, and methods that apply functions on user inputs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    TensorFlow Privacy

    TensorFlow Privacy

    Library for training machine learning models with privacy for data

    Library for training machine learning models with privacy for training data. This repository contains the source code for TensorFlow Privacy, a Python library that includes implementations of TensorFlow optimizers for training machine learning models with differential privacy. The library comes with tutorials and analysis tools for computing the privacy guarantees provided.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Haiku Sonnet for JAX

    Haiku Sonnet for JAX

    JAX-based neural network library

    ..., and a simple function transformation, hk.transform. hk.Modules are Python objects that hold references to their own parameters, other modules, and methods that apply functions on user inputs. hk.transform turns functions that use these object-oriented, functionally "impure" modules into pure functions that can be used with jax.jit, jax.grad, jax.pmap, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    AIMET

    AIMET

    AIMET is a library that provides advanced quantization and compression

    Qualcomm Innovation Center (QuIC) is at the forefront of enabling low-power inference at the edge through its pioneering model-efficiency research. QuIC has a mission to help migrate the ecosystem toward fixed-point inference. With this goal, QuIC presents the AI Model Efficiency Toolkit (AIMET) - a library that provides advanced quantization and compression techniques for trained neural network models. AIMET enables neural networks to run more efficiently on fixed-point AI hardware...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    OpenCLIP

    OpenCLIP

    An open source implementation of CLIP

    The goal of this repository is to enable training models with contrastive image-text supervision and to investigate their properties such as robustness to distribution shift. Our starting point is an implementation of CLIP that matches the accuracy of the original CLIP models when trained on the same dataset. Specifically, a ResNet-50 model trained with our codebase on OpenAI's 15 million image subset of YFCC achieves 32.7% top-1 accuracy on ImageNet. OpenAI's CLIP model reaches 31.3% when...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Thinc

    Thinc

    A refreshing functional take on deep learning

    ..., configure and deploy custom models built with their favorite framework. Switch between PyTorch, TensorFlow and MXNet models without changing your application, or even create mutant hybrids using zero-copy array interchange. Develop faster and catch bugs sooner with sophisticated type checking. Trying to pass a 1-dimensional array into a model that expects two dimensions? That’s a type error. Your editor can pick it up as the code leaves your fingers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    OpenNMT-tf

    OpenNMT-tf

    Neural machine translation and sequence learning using TensorFlow

    OpenNMT is an open-source ecosystem for neural machine translation and neural sequence learning. OpenNMT-tf is a general-purpose sequence learning toolkit using TensorFlow 2. While neural machine translation is the main target task, it has been designed to more generally support sequence-to-sequence mapping, sequence tagging, sequence classification, language modeling. Models are described with code to allow training custom architectures and overriding default behavior. For example...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    TensorFlow Model Garden

    TensorFlow Model Garden

    Models and examples built with TensorFlow

    ... are suitable. A flexible and lightweight library that users can easily use or fork when writing customized training loop code in TensorFlow 2.x. It seamlessly integrates with tf.distribute and supports running on different device types (CPU, GPU, and TPU).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Hummingbird

    Hummingbird

    Hummingbird compiles trained ML models into tensor computation

    Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to seamlessly leverage neural network frameworks (such as PyTorch) to accelerate traditional ML models. Thanks to Hummingbird, users can benefit from (1) all the current and future optimizations implemented in neural network frameworks; (2) native hardware acceleration; (3) having a unique platform to support both traditional and neural network models; and having all...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Spektral

    Spektral

    Graph Neural Networks with Keras and Tensorflow 2

    Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to provide a simple but flexible framework for creating graph neural networks (GNNs). You can use Spektral for classifying the users of a social network, predicting molecular properties, generating new graphs with GANs, clustering nodes, predicting links, and any other task where data is described by graphs. Spektral implements some of the most popular layers for graph...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next