Showing 37 open source projects for "ofn-layer-aligner"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1
    AIMET

    AIMET

    AIMET is a library that provides advanced quantization and compression

    Qualcomm Innovation Center (QuIC) is at the forefront of enabling low-power inference at the edge through its pioneering model-efficiency research. QuIC has a mission to help migrate the ecosystem toward fixed-point inference. With this goal, QuIC presents the AI Model Efficiency Toolkit (AIMET) - a library that provides advanced quantization and compression techniques for trained neural network models. AIMET enables neural networks to run more efficiently on fixed-point AI hardware...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    DiffEqFlux.jl

    DiffEqFlux.jl

    Pre-built implicit layer architectures with O(1) backprop, GPUs

    DiffEqFlux.jl is a Julia library that combines differential equations with neural networks, enabling the creation of neural differential equations (neural ODEs), universal differential equations, and physics-informed learning models. It serves as a bridge between the DifferentialEquations.jl and Flux.jl libraries, allowing for end-to-end differentiable simulations and model training in scientific machine learning. DiffEqFlux.jl is widely used for modeling dynamical systems with learnable...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    x-transformers

    x-transformers

    A simple but complete full-attention transformer

    A simple but complete full-attention transformer with a set of promising experimental features from various papers. Proposes adding learned memory key/values prior to attending. They were able to remove feedforwards altogether and attain a similar performance to the original transformers. I have found that keeping the feedforwards and adding the memory key/values leads to even better performance. Proposes adding learned tokens, akin to CLS tokens, named memory tokens, that is passed through...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    CUTLASS

    CUTLASS

    CUDA Templates for Linear Algebra Subroutines

    CUTLASS is a collection of CUDA C++ template abstractions for implementing high-performance matrix-multiplication (GEMM) and related computations at all levels and scales within CUDA. It incorporates strategies for hierarchical decomposition and data movement similar to those used to implement cuBLAS and cuDNN. CUTLASS decomposes these "moving parts" into reusable, modular software components abstracted by C++ template classes. These thread-wide, warp-wide, block-wide, and device-wide...
    Downloads: 3 This Week
    Last Update:
    See Project
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 5
    Semantic Router

    Semantic Router

    Superfast AI decision making and processing of multi-modal data

    Semantic Router is a superfast decision-making layer for your LLMs and agents. Rather than waiting for slow, unreliable LLM generations to make tool-use or safety decisions, we use the magic of semantic vector space — routing our requests using semantic meaning. Combining LLMs with deterministic rules means we can be confident that our AI systems behave as intended. Cramming agent tools into the limited context window is expensive, slow, and fundamentally limited.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    Tiny CUDA Neural Networks

    Tiny CUDA Neural Networks

    Lightning fast C++/CUDA neural network framework

    This is a small, self-contained framework for training and querying neural networks. Most notably, it contains a lightning-fast "fully fused" multi-layer perceptron (technical paper), a versatile multiresolution hash encoding (technical paper), as well as support for various other input encodings, losses, and optimizers. We provide a sample application where an image function (x,y) -> (R,G,B) is learned. The fully fused MLP component of this framework requires a very large amount of shared memory in its default configuration. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    Bootstrap Your Own Latent (BYOL)

    Bootstrap Your Own Latent (BYOL)

    Usable Implementation of "Bootstrap Your Own Latent" self-supervised

    ...A new paper has successfully replaced batch norm with group norm + weight standardization, refuting that batch statistics are needed for BYOL to work. Simply plugin your neural network, specifying (1) the image dimensions as well as (2) the name (or index) of the hidden layer, whose output is used as the latent representation used for self-supervised training.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Axon

    Axon

    Nx-powered Neural Networks

    Nx-powered Neural Networks for Elixir. Axon consists of the following components. Functional API – A low-level API of numerical definitions (defn) of which all other APIs build on. Model Creation API – A high-level model creation API which manages model initialization and application. Optimization API – An API for creating and using first-order optimization techniques based on the Optax library. Training API – An API for quickly training models, inspired by PyTorch Ignite. Axon provides...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    ktrain

    ktrain

    ktrain is a Python library that makes deep learning AI more accessible

    ktrain is a Python library that makes deep learning and AI more accessible and easier to apply. ktrain is a lightweight wrapper for the deep learning library TensorFlow Keras (and other libraries) to help build, train, and deploy neural networks and other machine learning models. Inspired by ML framework extensions like fastai and ludwig, ktrain is designed to make deep learning and AI more accessible and easier to apply for both newcomers and experienced practitioners. With only a few lines...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Smart Business Texting that Generates Pipeline Icon
    Smart Business Texting that Generates Pipeline

    Create and convert pipeline at scale through industry leading SMS campaigns, automation, and conversation management.

    TextUs is the leading text messaging service provider for businesses that want to engage in real-time conversations with customers, leads, employees and candidates. Text messaging is one of the most engaging ways to communicate with customers, candidates, employees and leads. 1:1, two-way messaging encourages response and engagement. Text messages help teams get 10x the response rate over phone and email. Business text messaging has become a more viable form of communication than traditional mediums. The TextUs user experience is intentionally designed to resemble the familiar SMS inbox, allowing users to easily manage contacts, conversations, and campaigns. Work right from your desktop with the TextUs web app or use the Chrome extension alongside your ATS or CRM. Leverage the mobile app for on-the-go sending and responding.
    Learn More
  • 10
    Thinc

    Thinc

    A refreshing functional take on deep learning

    Thinc is a lightweight deep learning library that offers an elegant, type-checked, functional-programming API for composing models, with support for layers defined in other frameworks such as PyTorch, TensorFlow and MXNet. You can use Thinc as an interface layer, a standalone toolkit or a flexible way to develop new models. Previous versions of Thinc have been running quietly in production in thousands of companies, via both spaCy and Prodigy. We wrote the new version to let users compose, configure and deploy custom models built with their favorite framework. Switch between PyTorch, TensorFlow and MXNet models without changing your application, or even create mutant hybrids using zero-copy array interchange. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    PostgresML

    PostgresML

    The GPU-powered AI application database

    ...Build statistical and predictive models with the full power of SQL and dozens of regression algorithms. Return results and detect fraud faster with ML at the database layer. PostgresML abstracts the data management overhead from the ML/AI lifecycle by enabling users to run ML/LLM models directly on a Postgres database.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Lightweight' GAN

    Lightweight' GAN

    Implementation of 'lightweight' GAN, proposed in ICLR 2021

    Implementation of 'lightweight' GAN proposed in ICLR 2021, in Pytorch. The main contribution of the paper is a skip-layer excitation in the generator, paired with autoencoding self-supervised learning in the discriminator. Quoting the one-line summary "converge on single gpu with few hours' training, on 1024 resolution sub-hundred images". Augmentation is essential for Lightweight GAN to work effectively in a low data setting. You can test and see how your images will be augmented before they pass into a neural network (if you use augmentation). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    AminePlatform

    AminePlatform

    Amine is a Multi-Layer Platform for the dev. of Intelligent Systems

    Amine is an Artificial Intelligence Multi-Layer Java Open Source Platform dedicated to the development of various kinds of Intelligent Systems and Agents (Knowledge-Based, Ontology-Based, Conceptual Graph -CG- Based, NLP, Reasoning and Learning, Natural Language Processing, etc.). Ontology, KB can be created and manipulated with various processes. CG theory is used as the main knowledge representation language.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    Keras Attention Mechanism

    Keras Attention Mechanism

    Attention mechanism Implementation for Keras

    ...We consider many 1D sequences of the same length. The task is to find the maximum of each sequence. We give the full sequence processed by the RNN layer to the attention layer. We expect the attention layer to focus on the maximum of each sequence.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    NanoDet-Plus

    NanoDet-Plus

    Lightweight anchor-free object detection model

    ...In NanoDet-Plus, we propose a novel label assignment strategy with a simple assign guidance module (AGM) and a dynamic soft label assigner (DSLA) to solve the optimal label assignment problem in lightweight model training. We also introduce a light feature pyramid called Ghost-PAN to enhance multi-layer feature fusion. These improvements boost previous NanoDet's detection accuracy by 7 mAP on COCO dataset. NanoDet provide multi-backend C++ demo including ncnn, OpenVINO and MNN. There is also an Android demo based on ncnn library. Supports various backends including ncnn, MNN and OpenVINO. Also provide Android demo based on ncnn inference framework.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 16
    Apache MXNet (incubating)

    Apache MXNet (incubating)

    A flexible and efficient library for deep learning

    Apache MXNet is an open source deep learning framework designed for efficient and flexible research prototyping and production. It contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations. On top of this is a graph optimization layer, overall making MXNet highly efficient yet still portable, lightweight and scalable.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Graph4NLP

    Graph4NLP

    Graph4nlp is the library for the easy use of Graph Neural Networks

    ...The architecture of Graph4NLP is shown in the following figure, where boxes with dashed lines represent the features under development. Graph4NLP consists of four different layers: 1) Data Layer, 2) Module Layer, 3) Model Layer, and 4) Application Layer. Graph4nlp aims to make it incredibly easy to use GNNs in NLP tasks (check out Graph4NLP Documentation).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Keras TCN

    Keras TCN

    Keras Temporal Convolutional Network

    ...Parallelism (convolutional layers), flexible receptive field size (possible to specify how far the model can see), stable gradients (backpropagation through time, vanishing gradients). The usual way is to import the TCN layer and use it inside a Keras model. The receptive field is defined as the maximum number of steps back in time from current sample at time T, that a filter from (block, layer, stack, TCN) can hit (effective history) + 1. The receptive field of the TCN can be calculated. Once keras-tcn is installed as a package, you can take a glimpse of what is possible to do with TCNs. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    PyTorch SimCLR

    PyTorch SimCLR

    PyTorch implementation of SimCLR: A Simple Framework

    ...And most important, their features are known to adapt well to new problems. This is particularly interesting when annotated training data is scarce. In situations like this, we take the models’ pre-trained weights, append a new classifier layer on top of it, and retrain the network. This is called transfer learning, and is one of the most used techniques in CV. Aside from a few tricks when performing fine-tuning (if the case), it has been shown (many times) that if training for a new task, models initialized with pre-trained weights tend to learn faster and be more accurate then training from scratch using random initialization.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    TensorLayer

    TensorLayer

    Deep learning and reinforcement learning library for scientists

    ...This project can also be found at OpenI and Gitee. 3.0.0 has been pre-released, the current version supports TensorFlow, MindSpore and PaddlePaddle (partial) as the backends, allowing users to run the code on different hardware like Nvidia-GPU and Huawei-Ascend. In the future, it will support TensorFlow, MindSpore, PaddlePaddle, PyTorch and other backends. TensorLayer has a high-level layer/model abstraction which is effortless to learn. You can learn how deep learning can benefit your AI tasks in minutes through the massive examples.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Lambda Networks

    Lambda Networks

    Implementation of LambdaNetworks, a new approach to image recognition

    Implementation of λ Networks, a new approach to image recognition that reaches SOTA on ImageNet. The new method utilizes λ layer, which captures interactions by transforming contexts into linear functions, termed lambdas, and applying these linear functions to each input separately. Shinel94 has added a Keras implementation! It won't be officially supported in this repository, so either copy / paste the code under ./lambda_networks/tfkeras.py or make sure to install tensorflow and keras before running the provided commands.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    CNN Explainer

    CNN Explainer

    Learning Convolutional Neural Networks with Interactive Visualization

    ...Let’s break down a CNN into its basic building blocks. A tensor can be thought of as an n-dimensional matrix. In the CNN above, tensors will be 3-dimensional with the exception of the output layer. A neuron can be thought of as a function that takes in multiple inputs and yields a single output. The outputs of neurons are represented above as the red → blue activation maps.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Java Neural Network Framework Neuroph
    Neuroph is lightweight Java Neural Network Framework which can be used to develop common neural network architectures. Small number of basic classes which correspond to basic NN concepts, and GUI editor makes it easy to learn and use.
    Leader badge
    Downloads: 62 This Week
    Last Update:
    See Project
  • 24
    NLP Best Practices

    NLP Best Practices

    Natural Language Processing Best Practices & Examples

    In recent years, natural language processing (NLP) has seen quick growth in quality and usability, and this has helped to drive business adoption of artificial intelligence (AI) solutions. In the last few years, researchers have been applying newer deep learning methods to NLP. Data scientists started moving from traditional methods to state-of-the-art (SOTA) deep neural network (DNN) algorithms which use language models pretrained on large text corpora. This repository contains examples and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    FID score for PyTorch

    FID score for PyTorch

    Compute FID scores with PyTorch

    ...However, due to differences in the image interpolation implementation and library backends, FID results still differ slightly from the original implementation. In difference to the official implementation, you can choose to use a different feature layer of the Inception network instead of the default pool3 layer.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next