Showing 38 open source projects for "ocr application python"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    EasyOCR

    EasyOCR

    Ready-to-use OCR with 80+ supported languages

    Ready-to-use OCR with 80+ supported languages and all popular writing scripts including Latin, Chinese, Arabic, Devanagari, Cyrillic and etc. EasyOCR is a python module for extracting text from image. It is a general OCR that can read both natural scene text and dense text in document. We are currently supporting 80+ languages and expanding. Second-generation models: multiple times smaller size, multiple times faster inference, additional characters and comparable accuracy to the first generation models. ...
    Downloads: 31 This Week
    Last Update:
    See Project
  • 2
    DocTR

    DocTR

    Library for OCR-related tasks powered by Deep Learning

    DocTR provides an easy and powerful way to extract valuable information from your documents. Seemlessly process documents for Natural Language Understanding tasks: we provide OCR predictors to parse textual information (localize and identify each word) from your documents. Robust 2-stage (detection + recognition) OCR predictors with pretrained parameters. User-friendly, 3 lines of code to load a document and extract text with a predictor. State-of-the-art performances on public document...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    Video-subtitle-extractor

    Video-subtitle-extractor

    A GUI tool for extracting hard-coded subtitle (hardsub) from videos

    Video hard subtitle extraction, generate srt file. There is no need to apply for a third-party API, and text recognition can be implemented locally. A deep learning-based video subtitle extraction framework, including subtitle region detection and subtitle content extraction. A GUI tool for extracting hard-coded subtitles (hardsub) from videos and generating srt files. Use local OCR recognition, no need to set up and call any API, and do not need to access online OCR services such as Baidu...
    Downloads: 65 This Week
    Last Update:
    See Project
  • 4
    Paperless-ngx

    Paperless-ngx

    A community-supported supercharged version of paperless

    Paperless-ngx is a community-supported open-source document management system that transforms your physical documents into a searchable online archive so you can keep, well, less paper.
    Downloads: 20 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    DoWhy

    DoWhy

    DoWhy is a Python library for causal inference

    DoWhy is a Python library for causal inference that supports explicit modeling and testing of causal assumptions. DoWhy is based on a unified language for causal inference, combining causal graphical models and potential outcomes frameworks. Much like machine learning libraries have done for prediction, DoWhy is a Python library that aims to spark causal thinking and analysis. DoWhy provides a wide variety of algorithms for effect estimation, causal structure learning, diagnosis of causal...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    Diffgram

    Diffgram

    Training data (data labeling, annotation, workflow) for all data types

    From ingesting data to exploring it, annotating it, and managing workflows. Diffgram is a single application that will improve your data labeling and bring all aspects of training data under a single roof. Diffgram is world’s first truly open source training data platform that focuses on giving its users an unlimited experience. This is aimed to reduce your data labeling bills and increase your Training Data Quality. Training Data is the art of supervising machines through data. This...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 7
    TorchMetrics AI

    TorchMetrics AI

    Machine learning metrics for distributed, scalable PyTorch application

    TorchMetrics is a collection of 100+ PyTorch metrics implementations and an easy-to-use API to create custom metrics.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Hamilton DAGWorks

    Hamilton DAGWorks

    Helps scientists define testable, modular, self-documenting dataflow

    ...To create a DAG, write regular Python functions that specify their dependencies with their parameters. As shown below, it results in readable code that can always be visualized. Hamilton loads that definition and automatically builds the DAG for you. Hamilton brings modularity and structure to any Python application moving data: ETL pipelines, ML workflows, LLM applications, RAG systems, BI dashboards, and the Hamilton UI allows you to automatically visualize, catalog, and monitor execution.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    APKiD

    APKiD

    Android Application Identifier for Packers, Protectors and Obfuscators

    APKiD gives you information about how an APK was made. It identifies many compilers, packers, obfuscators, and other weird stuff. It's PEiD for Android.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 10
    TorchMetrics

    TorchMetrics

    Machine learning metrics for distributed, scalable PyTorch application

    TorchMetrics is a collection of 80+ PyTorch metrics implementations and an easy-to-use API to create custom metrics. Your data will always be placed on the same device as your metrics. You can log Metric objects directly in Lightning to reduce even more boilerplate. The module-based metrics contain internal metric states (similar to the parameters of the PyTorch module) that automate accumulation and synchronization across devices! Automatic accumulation over multiple batches. Automatic...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    spaCy models

    spaCy models

    Models for the spaCy Natural Language Processing (NLP) library

    spaCy is designed to help you do real work, to build real products, or gather real insights. The library respects your time, and tries to avoid wasting it. It's easy to install, and its API is simple and productive. spaCy excels at large-scale information extraction tasks. It's written from the ground up in carefully memory-managed Cython. If your application needs to process entire web dumps, spaCy is the library you want to be using. Since its release in 2015, spaCy has become an industry...
    Downloads: 10 This Week
    Last Update:
    See Project
  • 12
    MLflow

    MLflow

    Open source platform for the machine learning lifecycle

    MLflow is a platform to streamline machine learning development, including tracking experiments, packaging code into reproducible runs, and sharing and deploying models. MLflow offers a set of lightweight APIs that can be used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you currently run ML code (e.g. in notebooks, standalone applications or the cloud).
    Downloads: 10 This Week
    Last Update:
    See Project
  • 13
    TensorFlow Model Optimization Toolkit

    TensorFlow Model Optimization Toolkit

    A toolkit to optimize ML models for deployment for Keras & TensorFlow

    The TensorFlow Model Optimization Toolkit is a suite of tools for optimizing ML models for deployment and execution. Among many uses, the toolkit supports techniques used to reduce latency and inference costs for cloud and edge devices (e.g. mobile, IoT). Deploy models to edge devices with restrictions on processing, memory, power consumption, network usage, and model storage space. Enable execution on and optimize for existing hardware or new special purpose accelerators. Choose the model...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    AIF360

    AIF360

    A comprehensive set of fairness metrics for datasets

    This extensible open source toolkit can help you examine, report, and mitigate discrimination and bias in machine learning models throughout the AI application lifecycle. We invite you to use and improve it. The AI Fairness 360 toolkit is an extensible open-source library containing techniques developed by the research community to help detect and mitigate bias in machine learning models throughout the AI application lifecycle. AI Fairness 360 package is available in both Python and R. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Triton Inference Server

    Triton Inference Server

    The Triton Inference Server provides an optimized cloud

    ...Model pipelines using Ensembling or Business Logic Scripting (BLS). HTTP/REST and GRPC inference protocols based on the community-developed KServe protocol. A C API and Java API allow Triton to link directly into your application for edge and other in-process use cases.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 16
    MLJAR Studio

    MLJAR Studio

    Python package for AutoML on Tabular Data with Feature Engineering

    We are working on new way for visual programming. We developed a desktop application called MLJAR Studio. It is a notebook-based development environment with interactive code recipes and a managed Python environment. All running locally on your machine. We are waiting for your feedback. The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. It is designed to save time for a data scientist.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    NVIDIA FLARE

    NVIDIA FLARE

    NVIDIA Federated Learning Application Runtime Environment

    NVIDIA Federated Learning Application Runtime Environment NVIDIA FLARE is a domain-agnostic, open-source, extensible SDK that allows researchers and data scientists to adapt existing ML/DL workflows(PyTorch, TensorFlow, Scikit-learn, XGBoost etc.) to a federated paradigm. It enables platform developers to build a secure, privacy-preserving offering for a distributed multi-party collaboration. NVIDIA FLARE is built on a componentized architecture that allows you to take federated...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    PML

    PML

    The easiest way to use deep metric learning in your application

    This library contains 9 modules, each of which can be used independently within your existing codebase, or combined together for a complete train/test workflow. To compute the loss in your training loop, pass in the embeddings computed by your model, and the corresponding labels. The embeddings should have size (N, embedding_size), and the labels should have size (N), where N is the batch size. The TripletMarginLoss computes all possible triplets within the batch, based on the labels you...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    snorkel

    snorkel

    A system for quickly generating training data with weak supervision

    The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI application development platform based on the core ideas behind Snorkel. The Snorkel project started at Stanford in 2016 with a simple technical bet: that it would increasingly be the training data, not the models, algorithms, or infrastructure, that decided whether a machine learning project succeeded or failed. Given this premise, we set out to explore the radical idea that you could bring mathematical and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Thinc

    Thinc

    A refreshing functional take on deep learning

    Thinc is a lightweight deep learning library that offers an elegant, type-checked, functional-programming API for composing models, with support for layers defined in other frameworks such as PyTorch, TensorFlow and MXNet. You can use Thinc as an interface layer, a standalone toolkit or a flexible way to develop new models. Previous versions of Thinc have been running quietly in production in thousands of companies, via both spaCy and Prodigy. We wrote the new version to let users compose,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    DeepCamera

    DeepCamera

    Open-Source AI Camera. Empower any camera/CCTV

    ...SharpAI-hub is the cloud hosting for AI applications that helps you deploy AI applications with your CCTV camera on your edge device in minutes. SharpAI yolov7_reid is an open-source Python application that leverages AI technologies to detect intruders with traditional surveillance cameras. The source code is here It leverages Yolov7 as a person detector, FastReID for person feature extraction, Milvus the local vector database for self-supervised learning to identify unseen persons, Labelstudio to host images locally and for further usage such as label data and train your own classifier. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 22
    Tiny CUDA Neural Networks

    Tiny CUDA Neural Networks

    Lightning fast C++/CUDA neural network framework

    ...These bindings can be significantly faster than full Python implementations; in particular for the multiresolution hash encoding.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    SMILI

    SMILI

    Scientific Visualisation Made Easy

    The Simple Medical Imaging Library Interface (SMILI), pronounced 'smilie', is an open-source, light-weight and easy-to-use medical imaging viewer and library for all major operating systems. The main sMILX application features for viewing n-D images, vector images, DICOMs, anonymizing, shape analysis and models/surfaces with easy drag and drop functions. It also features a number of standard processing algorithms for smoothing, thresholding, masking etc. images and models, both with...
    Leader badge
    Downloads: 11 This Week
    Last Update:
    See Project
  • 24
    Zylthra

    Zylthra

    Zylthra: A PyQt6 app to generate synthetic datasets with DataLLM.

    Welcome to Zylthra, a powerful Python-based desktop application built with PyQt6, designed to generate synthetic datasets using the DataLLM API from data.mostly.ai. This tool allows users to create custom datasets by defining columns, configuring generation parameters, and saving setups for reuse, all within a sleek, dark-themed interface.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    T81 558

    T81 558

    Applications of Deep Neural Networks

    Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks that can handle tabular data, images, text, and audio as both input and output. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to classic neural network...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next