Showing 7 open source projects for "note taking software"

View related business solutions
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • Enterprise-grade ITSM, for every business Icon
    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity.

    Freshservice is an intuitive, AI-powered platform that helps IT, operations, and business teams deliver exceptional service without the usual complexity. Automate repetitive tasks, resolve issues faster, and provide seamless support across the organization. From managing incidents and assets to driving smarter decisions, Freshservice makes it easy to stay efficient and scale with confidence.
    Try it Free
  • 1
    Open Notebook

    Open Notebook

    An Open Source implementation of Notebook LM with more flexibility

    Open Notebook is an open-source, privacy-focused alternative to Google’s Notebook LM that gives users full control over their research and AI workflows. Designed to be self-hosted, it ensures complete data sovereignty by keeping your content local or within your own infrastructure. The platform supports 16+ AI providers—including OpenAI, Anthropic, Ollama, Google, and LM Studio—allowing flexible model choice and cost optimization. Open Notebook enables users to organize and analyze...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 2
    OpenSpiel

    OpenSpiel

    Environments and algorithms for research in general reinforcement

    OpenSpiel is a collection of environments and algorithms for research in general reinforcement learning and search/planning in games. OpenSpiel supports n-player (single- and multi- agent) zero-sum, cooperative and general-sum, one-shot and sequential, strictly turn-taking and simultaneous-move, perfect and imperfect information games, as well as traditional multiagent environments such as (partially- and fully- observable) grid worlds and social dilemmas. OpenSpiel also includes tools to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    satellite-image-deep-learning

    satellite-image-deep-learning

    Resources for deep learning with satellite & aerial imagery

    This page lists resources for performing deep learning on satellite imagery. To a lesser extent classical Machine learning (e.g. random forests) are also discussed, as are classical image processing techniques. Note there is a huge volume of academic literature published on these topics, and this repository does not seek to index them all but rather list approachable resources with published code that will benefit both the research and developer communities. If you find this work useful...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    MegEngine

    MegEngine

    Easy-to-use deep learning framework with 3 key features

    MegEngine is a fast, scalable and easy-to-use deep learning framework with 3 key features. You can represent quantization/dynamic shape/image pre-processing and even derivation in one model. After training, just put everything into your model and inference it on any platform at ease. Speed and precision problems won't bother you anymore due to the same core inside. In training, GPU memory usage could go down to one-third at the cost of only one additional line, which enables the DTR...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Build AI Apps with Gemini 3 on Vertex AI Icon
    Build AI Apps with Gemini 3 on Vertex AI

    Access Google’s most capable multimodal models. Train, test, and deploy AI with 200+ foundation models on one platform.

    Vertex AI gives developers access to Gemini 3—Google’s most advanced reasoning and coding model—plus 200+ foundation models including Claude, Llama, and Gemma. Build generative AI apps with Vertex AI Studio, customize with fine-tuning, and deploy to production with enterprise-grade MLOps. New customers get $300 in free credits.
    Try Vertex AI Free
  • 5
    CUTLASS

    CUTLASS

    CUDA Templates for Linear Algebra Subroutines

    CUTLASS is a collection of CUDA C++ template abstractions for implementing high-performance matrix-multiplication (GEMM) and related computations at all levels and scales within CUDA. It incorporates strategies for hierarchical decomposition and data movement similar to those used to implement cuBLAS and cuDNN. CUTLASS decomposes these "moving parts" into reusable, modular software components abstracted by C++ template classes. These thread-wide, warp-wide, block-wide, and device-wide...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    GUAJE FUZZY

    GUAJE FUZZY

    Free software for generating understandable and accurate fuzzy systems

    GUAJE stands for Generating Understandable and Accurate fuzzy models in a Java Environment. Thus, it is a free software tool (licensed under GPL-v3) with the aim of supporting the design of interpretable and accurate fuzzy systems by means of combining several preexisting open source tools, taking profit from the main advantages of all of them. It is a user-friendly portable tool designed and developed in order to make easier knowledge extraction and representation for fuzzy systems, paying special attention to interpretability issues. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Kernel Adaptive Filtering Toolbox

    Kernel Adaptive Filtering Toolbox

    a Matlab benchmarking toolbox for kernel adaptive filtering

    ...If you use this toolbox in your research please cite: @inproceedings{vanvaerenbergh2013comparative, author = {Van Vaerenbergh, Steven and Santamar{\'i}a, Ignacio}, booktitle = {2013 IEEE Digital Signal Processing (DSP) Workshop and IEEE Signal Processing Education (SPE)}, title = {A Comparative Study of Kernel Adaptive Filtering Algorithms}, year = {2013}, note = {Software available at \url{https://github.com/steven2358/kafbox/}} }
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB