Showing 30 open source projects for "network graph analysis"

View related business solutions
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 1
    Materials Discovery: GNoME

    Materials Discovery: GNoME

    AI discovers 520000 stable inorganic crystal structures for research

    Materials Discovery (GNoME) is a large-scale research initiative by Google DeepMind focused on applying graph neural networks to accelerate the discovery of stable inorganic crystal materials. The project centers on Graph Networks for Materials Exploration (GNoME), a message-passing neural network architecture trained on density functional theory (DFT) data to predict material stability and energy formation. Using GNoME, DeepMind identified 381,000 new stable materials, later expanding the dataset to include over 520,000 materials within 1 meV/atom of the convex hull as of August 2024. ...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 2
    PyG

    PyG

    Graph Neural Network Library for PyTorch

    PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data. It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of easy-to-use mini-batch loaders for operating on many small and single giant graphs, multi GPU-support, DataPipe support,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    DoWhy

    DoWhy

    DoWhy is a Python library for causal inference

    ...DoWhy is based on a unified language for causal inference, combining causal graphical models and potential outcomes frameworks. Much like machine learning libraries have done for prediction, DoWhy is a Python library that aims to spark causal thinking and analysis. DoWhy provides a wide variety of algorithms for effect estimation, causal structure learning, diagnosis of causal structures, root cause analysis, interventions and counterfactuals. DoWhy builds on two of the most powerful frameworks for causal inference: graphical causal models and potential outcomes. For effect estimation, it uses graph-based criteria and do-calculus for modeling assumptions and identifying a non-parametric causal effect. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    ONNX

    ONNX

    Open standard for machine learning interoperability

    ...ONNX defines a common set of operators - the building blocks of machine learning and deep learning models - and a common file format to enable AI developers to use models with a variety of frameworks, tools, runtimes, and compilers. Open Neural Network Exchange (ONNX) is an open ecosystem that empowers AI developers to choose the right tools as their project evolves. ONNX provides an open source format for AI models, both deep learning and traditional ML. It defines an extensible computation graph model, as well as definitions of built-in operators and standard data types. Currently we focus on the capabilities needed for inferencing (scoring). ...
    Downloads: 6 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 5
    DeepVariant

    DeepVariant

    DeepVariant is an analysis pipeline that uses a deep neural networks

    DeepVariant is an analysis pipeline that uses a deep neural network to call genetic variants from next-generation DNA sequencing data. DeepVariant is a deep learning-based variant caller that takes aligned reads (in BAM or CRAM format), produces pileup image tensors from them, classifies each tensor using a convolutional neural network, and finally reports the results in a standard VCF or gVCF file.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 6
    Spektral

    Spektral

    Graph Neural Networks with Keras and Tensorflow 2

    Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to provide a simple but flexible framework for creating graph neural networks (GNNs). You can use Spektral for classifying the users of a social network, predicting molecular properties, generating new graphs with GANs, clustering nodes, predicting links, and any other task where data is described by graphs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    hloc

    hloc

    Visual localization made easy with hloc

    ...It implements Hierarchical Localization, leveraging image retrieval and feature matching, and is fast, accurate, and scalable. This codebase won the indoor/outdoor localization challenges at CVPR 2020 and ECCV 2020, in combination with SuperGlue, our graph neural network for feature matching. We provide step-by-step guides to localize with Aachen, InLoc, and to generate reference poses for your own data using SfM. Just download the datasets and you're reading to go! The notebook pipeline_InLoc.ipynb shows the steps for localizing with InLoc. It's much simpler since a 3D SfM model is not needed. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Karate Club

    Karate Club

    An API Oriented Open-source Python Framework for Unsupervised Learning

    Karate Club is an unsupervised machine learning extension library for NetworkX. Karate Club consists of state-of-the-art methods to do unsupervised learning on graph-structured data. To put it simply it is a Swiss Army knife for small-scale graph mining research. First, it provides network embedding techniques at the node and graph level. Second, it includes a variety of overlapping and non-overlapping community detection methods. Implemented methods cover a wide range of network science (NetSci, Complenet), data mining (ICDM, CIKM, KDD), artificial intelligence (AAAI, IJCAI) and machine learning (NeurIPS, ICML, ICLR) conferences, workshops, and pieces from prominent journals.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    DeepImageTranslator

    DeepImageTranslator

    DeepImageTranslator: a deep-learning utility for image translation

    Created by: Run Zhou Ye, En Zhou Ye, and En Hui Ye DeepImageTranslator: a free, user-friendly tool for image translation using deep-learning and its applications in CT image analysis Citation: Please cite this software as: Ye RZ, Noll C, Richard G, Lepage M, Turcotte ÉE, Carpentier AC. DeepImageTranslator: a free, user-friendly graphical interface for image translation using deep-learning and its applications in 3D CT image analysis. SLAS technology. 2022 Feb 1;27(1):76-84....
    Downloads: 0 This Week
    Last Update:
    See Project
  • Rent Manager Software Icon
    Rent Manager Software

    Landlords, multi-family homes, manufactured home communities, single family homes, associations, commercial properties and mixed portfolios.

    Rent Manager is award-winning property management software built for residential, commercial, and short-term-stay portfolios of any size. The program’s fully customizable features include a double-entry accounting system, maintenance management/scheduling, marketing integration, mobile applications, more than 450 insightful reports, and an API that integrates with the best PropTech providers on the market.
    Learn More
  • 10
    CapsGNN

    CapsGNN

    A PyTorch implementation of "Capsule Graph Neural Network"

    ...Inspired by the Capsule Neural Network (CapsNet), we propose the Capsule Graph Neural Network (CapsGNN), which adopts the concept of capsules to address the weakness in existing GNN-based graph embeddings algorithms. By extracting node features in the form of capsules, routing mechanism can be utilized to capture important information at the graph level. As a result, our model generates multiple embeddings for each graph to capture graph properties from different aspects.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Minkowski Engine

    Minkowski Engine

    Auto-diff neural network library for high-dimensional sparse tensors

    The Minkowski Engine is an auto-differentiation library for sparse tensors. It supports all standard neural network layers such as convolution, pooling, unspooling, and broadcasting operations for sparse tensors. The Minkowski Engine supports various functions that can be built on a sparse tensor. We list a few popular network architectures and applications here. To run the examples, please install the package and run the command in the package root directory. Compressing a neural network to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    TFLearn

    TFLearn

    Deep learning library featuring a higher-level API for TensorFlow

    ...Easy-to-use and understand high-level API for implementing deep neural networks, with tutorials and examples. Fast prototyping through highly modular built-in neural network layers, regularizers, optimizers, and metrics. Full transparency over Tensorflow. All functions are built over tensors and can be used independently of TFLearn. Powerful helper functions to train any TensorFlow graph, with support of multiple inputs, outputs, and optimizers. Easy and beautiful graph visualization, with details about weights, gradients, activations, and more. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Neural Networks Collection

    Neural Networks Collection

    Neural Networks Collection

    This project implements in C++ a bunch of known Neural Networks. So far the project implements: LVQ in several variants, SOM in several variants, Hopfield network and Perceptron. Other neural network types are planned, but not implemented yet. The project can run in two modes: command line tool and Python 7.2 extension. Currently, Python version appears more functional, as it allows easy interaction with algorithms developed by other people.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    fastNLP

    fastNLP

    fastNLP: A Modularized and Extensible NLP Framework

    ...Built-in Loader and Pipe for multiple datasets, eliminating the need for preprocessing code. Various convenient NLP tools, such as Embedding loading (including ELMo and BERT), intermediate data cache, etc.. Provide a variety of neural network components and recurrence models (covering tasks such as Chinese word segmentation, named entity recognition, syntactic analysis, text classification, text matching, metaphor resolution, summarization, etc.). Trainer provides a variety of built-in Callback functions to facilitate experiment recording, exception capture, etc. Automatic download of some datasets and pre-trained models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Euler

    Euler

    A distributed graph deep learning framework.

    ...Data in the fields of text, speech, and images is easier to process into a grid-like type of Euclidean space, which is suitable for processing by existing deep learning models. Graph is a data type in non-Euclidean space and cannot be directly applied to existing methods, requiring a specially designed graph neural network system. Graph-based learning methods such as graph neural networks combine end-to-end learning with inductive reasoning, and are expected to solve a series of problems such as relational reasoning and interpretability that deep learning cannot handle.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    StellarGraph

    StellarGraph

    Machine Learning on Graphs

    StellarGraph is a Python library for machine learning on graphs and networks. The StellarGraph library offers state-of-the-art algorithms for graph machine learning, making it easy to discover patterns and answer questions about graph-structured data. It can solve many machine learning tasks. Graph-structured data represent entities as nodes (or vertices) and relationships between them as edges (or links), and can include data associated with either as attributes. For example, a graph can contain people as nodes and friendships between them as links, with data like a person’s age and the date a friendship was established. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Delta ML

    Delta ML

    Deep learning based natural language and speech processing platform

    ...DELTA has been used for developing several state-of-the-art algorithms for publications and delivering real production to serve millions of users. It helps you to train, develop, and deploy NLP and/or speech models. Use configuration files to easily tune parameters and network structures. What you see in training is what you get in serving: all data processing and features extraction are integrated into a model graph. Text classification, named entity recognition, question and answering, text summarization, etc. Uniform I/O interfaces and no changes for new models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    NiftyNet

    NiftyNet

    An open-source convolutional neural networks platform for research

    An open-source convolutional neural networks platform for medical image analysis and image-guided therapy. NiftyNet is a TensorFlow-based open-source convolutional neural networks (CNNs) platform for research in medical image analysis and image-guided therapy. NiftyNet’s modular structure is designed for sharing networks and pre-trained models. Using this modular structure you can get started with established pre-trained networks using built-in tools. Adapt existing networks to your imaging...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    SLING

    SLING

    A natural language frame semantics parser

    The aim of the SLING project is to learn to read and understand Wikipedia articles in many languages for the purpose of knowledge base completion, e.g. adding facts mentioned in Wikipedia (and other sources) to the Wikidata knowledge base. We use frame semantics as a common representation for both knowledge representation and document annotation. The SLING parser can be trained to produce frame semantic representations of text directly without any explicit intervening linguistic...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    PyTorch Book

    PyTorch Book

    PyTorch tutorials and fun projects including neural talk

    This is the corresponding code for the book "The Deep Learning Framework PyTorch: Getting Started and Practical", but it can also be used as a standalone PyTorch Getting Started Guide and Tutorial. The current version of the code is based on pytorch 1.0.1, if you want to use an older version please git checkout v0.4or git checkout v0.3. Legacy code has better python2/python3 compatibility, CPU/GPU compatibility test. The new version of the code has not been fully tested, it has been tested...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Accord.NET Framework

    Accord.NET Framework

    Scientific computing, machine learning and computer vision for .NET

    The Accord.NET Framework provides machine learning, mathematics, statistics, computer vision, computer audition, and several scientific computing related methods and techniques to .NET. The project is compatible with the .NET Framework. NET Standard, .NET Core, and Mono.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 22
    Awesome Recurrent Neural Networks

    Awesome Recurrent Neural Networks

    A curated list of resources dedicated to RNN

    A curated list of resources dedicated to recurrent neural networks (closely related to deep learning). Provides a wide range of works and resources such as a Recurrent Neural Network Tutorial, a Sequence-to-Sequence Model Tutorial, Tutorials by nlintz, Notebook examples by aymericdamien, Scikit Flow (skflow) - Simplified Scikit-learn like Interface for TensorFlow, Keras (Tensorflow / Theano)-based modular deep learning library similar to Torch, char-rnn-tensorflow by sherjilozair, char-rnn...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23

    Chordalysis

    Log-linear analysis (data modelling) for high-dimensional data

    ===== Project moved to https://github.com/fpetitjean/Chordalysis ===== Log-linear analysis is the statistical method used to capture multi-way relationships between variables. However, due to its exponential nature, previous approaches did not allow scale-up to more than a dozen variables. We present here Chordalysis, a log-linear analysis method for big data. Chordalysis exploits recent discoveries in graph theory by representing complex models as compositions of triangular structures, also known as chordal graphs. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    neural network designer

    neural network designer

    a dbms for neural nets. Chatbots, DTrees, random forests, n-grams,...

    This project consists out of a windows based designer application and a library (that can run on multiple platforms, including android) together with several demo applications (including an MVC3 chatbot client and an android application). It is probably best compared to a database management system, but for neural networks instead of relational data. As such, the library is optimized for handling any type of data-size by using advanced streaming and caching algorithms. With the designer,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25

    Graphlet kernel framework

    Calculates similarity between neighborhoods of two vertices in a graph

    ...If you use this framework, please cite the following paper: Lugo-Martinez J, Radivojac P. Generalized graphlet kernels for probabilistic inference in sparse graphs. Network Science (2014) 2(2): 254-276.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next