Showing 9 open source projects for "hj-split"

View related business solutions
  • Cut Cloud Costs with Google Compute Engine Icon
    Cut Cloud Costs with Google Compute Engine

    Save up to 91% with Spot VMs and get automatic sustained-use discounts. One free VM per month, plus $300 in credits.

    Save on compute costs with Compute Engine. Reduce your batch jobs and workload bill 60-91% with Spot VMs. Compute Engine's committed use offers customers up to 70% savings through sustained use discounts. Plus, you get one free e2-micro VM monthly and $300 credit to start.
    Try Compute Engine
  • Ship AI Apps Faster with Vertex AI Icon
    Ship AI Apps Faster with Vertex AI

    Go from idea to deployed AI app without managing infrastructure. Vertex AI offers one platform for the entire AI development lifecycle.

    Ship AI apps and features faster with Vertex AI—your end-to-end AI platform. Access Gemini 3 and 200+ foundation models, fine-tune for your needs, and deploy with enterprise-grade MLOps. Build chatbots, agents, or custom models. New customers get $300 in free credit.
    Try Vertex AI Free
  • 1
    StemRoller

    StemRoller

    Isolate vocals, drums, bass, and other instrumental stems from songs

    ...That bundle includes everything you need to split stems.
    Downloads: 51 This Week
    Last Update:
    See Project
  • 2

    LightGBM

    Gradient boosting framework based on decision tree algorithms

    LightGBM or Light Gradient Boosting Machine is a high-performance, open source gradient boosting framework based on decision tree algorithms. Compared to other boosting frameworks, LightGBM offers several advantages in terms of speed, efficiency and accuracy. Parallel experiments have shown that LightGBM can attain linear speed-up through multiple machines for training in specific settings, all while consuming less memory. LightGBM supports parallel and GPU learning, and can handle...
    Downloads: 8 This Week
    Last Update:
    See Project
  • 3
    torchtext

    torchtext

    Data loaders and abstractions for text and NLP

    ...LTS versions are distributed through a different channel than the other versioned releases. Alternatively, you might want to use the Moses tokenizer port in SacreMoses (split from NLTK). You have to install SacreMoses. To build torchtext from source, you need git, CMake and C++11 compiler such as g++. When building from source, make sure that you have the same C++ compiler as the one used to build PyTorch. A simple way is to build PyTorch from source and use the same environment to build torchtext. If you are using the nightly build of PyTorch, check out the environment it was built with conda (here) and pip (here). ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    AIMET

    AIMET

    AIMET is a library that provides advanced quantization and compression

    Qualcomm Innovation Center (QuIC) is at the forefront of enabling low-power inference at the edge through its pioneering model-efficiency research. QuIC has a mission to help migrate the ecosystem toward fixed-point inference. With this goal, QuIC presents the AI Model Efficiency Toolkit (AIMET) - a library that provides advanced quantization and compression techniques for trained neural network models. AIMET enables neural networks to run more efficiently on fixed-point AI hardware...
    Downloads: 2 This Week
    Last Update:
    See Project
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 5
    GluonTS

    GluonTS

    Probabilistic time series modeling in Python

    ...The dataset consists of a single time-series, containing monthly international passengers between the years 1949 and 1960, a total of 144 values (12 years * 12 months). We split the dataset into train and test parts, by removing the last three years (36 months) from the train data. Thus, we will train a model on just the first nine years of data. Python has the notion of extras – dependencies that can be optionally installed to unlock certain features of a package. We make extensive use of optional dependencies in GluonTS to keep the amount of required dependencies minimal. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    PoseidonQ  - AI/ML Based QSAR Modeling

    PoseidonQ - AI/ML Based QSAR Modeling

    ML based QSAR Modelling And Translation of Model to Deployable WebApps

    - This Software was made with an intention to make QSAR building more efficient and reproducible. - Published in ACS, Journal of Chemical Information and Modeling . Link : https://pubs.acs.org/doi/10.1021/acs.jcim.4c02372 - Simple to use and no compromise on essential features necessary to make reliable QSAR models. - From Generating Reliable ML Based QSAR Models to Developing Your Own QSAR WebApp. For any feedback or queries, contact kabeermuzammil614@gmail.com - Available on Windows...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 7
    OGB

    OGB

    Benchmark datasets, data loaders, and evaluators for graph machine

    The Open Graph Benchmark (OGB) is a collection of realistic, large-scale, and diverse benchmark datasets for machine learning on graphs. OGB datasets are automatically downloaded, processed, and split using the OGB Data Loader. The model performance can be evaluated using the OGB Evaluator in a unified manner. OGB is a community-driven initiative in active development. We expect the benchmark datasets to evolve. OGB provides a diverse set of challenging and realistic benchmark datasets that are of varying sizes and cover a variety graph machine learning tasks, including prediction of node, link, and graph properties. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8

    OWL Machine Learning

    Machine learning algorithm using OWL

    Feature construction and selection are two key factors in the field of Machine Learning (ML). Usually, these are very time-consuming and complex tasks because the features have to be manually crafted. The features are aggregated, combined or split to create features from raw data. This project makes use of ontologies to automatically generate features for the ML algorithms. The features are generated by combining the concepts and relationships that are already in the knowledge base, expressed in form of ontology.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9

    GA-EoC

    GeneticAlgorithm-based search for Heterogeneous Ensemble Combinations

    In data classification, there are no particular classifiers that perform consistently in every case. This is even worst in case of both the high dimensional and class-imbalanced datasets. To overcome the limitations of class-imbalanced data, we split the dataset using a random sub-sampling to balance them. Then, we apply the (alpha,beta)-k feature set method to select a better subset of features and combine their outputs to get a consolidated feature set for classifier training. To enhance classification performances, we propose an ensemble of classifiers that combine the classification outputs of base classifiers using the simplest and largely used majority voting approach. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Easily Host LLMs and Web Apps on Cloud Run Icon
    Easily Host LLMs and Web Apps on Cloud Run

    Run everything from popular models with on-demand NVIDIA L4 GPUs to web apps without infrastructure management.

    Run frontend and backend services, batch jobs, host LLMs, and queue processing workloads without the need to manage infrastructure. Cloud Run gives you on-demand GPU access for hosting LLMs and running real-time AI—with 5-second cold starts and automatic scale-to-zero so you only pay for actual usage. New customers get $300 in free credit to start.
    Try Cloud Run Free
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB
Gen AI apps are built with MongoDB Atlas
Atlas offers built-in vector search and global availability across 125+ regions. Start building AI apps faster, all in one place.