Showing 26 open source projects for "accurate"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    NeuralForecast

    NeuralForecast

    Scalable and user friendly neural forecasting algorithms.

    ...They are hard to use and continuously fail to improve over statistical methods while being computationally prohibitive. For this reason, we created NeuralForecast, a library favoring proven accurate and efficient models focusing on their usability.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    whisper-timestamped

    whisper-timestamped

    Multilingual Automatic Speech Recognition with word-level timestamps

    ...Whisper models were trained to predict approximate timestamps on speech segments (most of the time with 1-second accuracy), but they cannot originally predict word timestamps. This repository proposes an implementation to predict word timestamps and provide a more accurate estimation of speech segments when transcribing with Whisper models. Besides, a confidence score is assigned to each word and each segment.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Determined

    Determined

    Determined, deep learning training platform

    The fastest and easiest way to build deep learning models. Distributed training without changing your model code. Determined takes care of provisioning machines, networking, data loading, and fault tolerance. Build more accurate models faster with scalable hyperparameter search, seamlessly orchestrated by Determined. Use state-of-the-art algorithms and explore results with our hyperparameter search visualizations. Interpret your experiment results using the Determined UI and TensorBoard, and reproduce experiments with artifact tracking. Deploy your model using Determined's built-in model registry. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    pycm

    pycm

    Multi-class confusion matrix library in Python

    PyCM is a multi-class confusion matrix library written in Python that supports both input data vectors and direct matrix, and a proper tool for post-classification model evaluation that supports most classes and overall statistics parameters. PyCM is the swiss-army knife of confusion matrices, targeted mainly at data scientists that need a broad array of metrics for predictive models and an accurate evaluation of large variety of classifiers.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Pest Control Management Software Icon
    Pest Control Management Software

    Pocomos is a cloud-based field service solution that caters to businesses

    Built for the pest control industry, but also works great for Mosquito Control, Bin Cleaning, Window Washing, Solar Panel Cleaning, and other Home Service Businesses in need of an easy-to-use software that helps you simplify routing, scheduling, communications, payment processing, truck tracking, time tracking, and reporting.
    Learn More
  • 5
    Label Studio

    Label Studio

    Label Studio is a multi-type data labeling and annotation tool

    ...It lets you label data types like audio, text, images, videos, and time series with a simple and straightforward UI and export to various model formats. It can be used to prepare raw data or improve existing training data to get more accurate ML models. The frontend part of Label Studio app lies in the frontend/ folder and written in React JSX. Multi-user labeling sign up and login, when you create an annotation it's tied to your account. Configurable label formats let you customize the visual interface to meet your specific labeling needs. Support for multiple data types including images, audio, text, HTML, time-series, and video.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 6
    PyBroker

    PyBroker

    Algorithmic Trading in Python with Machine Learning

    Are you looking to enhance your trading strategies with the power of Python and machine learning? Then you need to check out PyBroker! This Python framework is designed for developing algorithmic trading strategies, with a focus on strategies that use machine learning. With PyBroker, you can easily create and fine-tune trading rules, build powerful models, and gain valuable insights into your strategy’s performance.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    MindsDB

    MindsDB

    Making Enterprise Data Intelligent and Responsive for AI

    MindsDB is an AI data solution that enables humans, AI, agents, and applications to query data in natural language and SQL, and get highly accurate answers across disparate data sources and types. MindsDB connects to diverse data sources and applications, and unifies petabyte-scale structured and unstructured data. Powered by an industry-first cognitive engine that can operate anywhere (on-prem, VPC, serverless), it empowers both humans and AI with highly informed decision-making capabilities. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 8
    Porcupine

    Porcupine

    On-device wake word detection powered by deep learning

    Build always-listening yet private voice applications. Porcupine is a highly-accurate and lightweight wake word engine. It enables building always-listening voice-enabled applications. It is using deep neural networks trained in real-world environments. Compact and computationally-efficient. It is perfect for IoT. Cross-platform. Arm Cortex-M, STM32, PSoC, Arduino, and i.MX RT. Raspberry Pi, NVIDIA Jetson Nano, and BeagleBone.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    FLAML

    FLAML

    A fast library for AutoML and tuning

    FLAML is a lightweight Python library that finds accurate machine learning models automatically, efficiently and economically. It frees users from selecting learners and hyperparameters for each learner. For common machine learning tasks like classification and regression, it quickly finds quality models for user-provided data with low computational resources. It supports both classical machine learning models and deep neural networks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • AestheticsPro Medical Spa Software Icon
    AestheticsPro Medical Spa Software

    Our new software release will dramatically improve your medspa business performance while enhancing the customer experience

    AestheticsPro is the most complete Aesthetics Software on the market today. HIPAA Cloud Compliant with electronic charting, integrated POS, targeted marketing and results driven reporting; AestheticsPro delivers the tools you need to manage your medical spa business. It is our mission To Provide an All-in-One Cutting Edge Software to the Aesthetics Industry.
    Learn More
  • 10
    fastai

    fastai

    Deep learning library

    fastai is a deep learning library which provides practitioners with high-level components that can quickly and easily provide state-of-the-art results in standard deep learning domains, and provides researchers with low-level components that can be mixed and matched to build new approaches. It aims to do both things without substantial compromises in ease of use, flexibility, or performance. This is possible thanks to a carefully layered architecture, which expresses common underlying...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    hloc

    hloc

    Visual localization made easy with hloc

    This is hloc, a modular toolbox for state-of-the-art 6-DoF visual localization. It implements Hierarchical Localization, leveraging image retrieval and feature matching, and is fast, accurate, and scalable. This codebase won the indoor/outdoor localization challenges at CVPR 2020 and ECCV 2020, in combination with SuperGlue, our graph neural network for feature matching. We provide step-by-step guides to localize with Aachen, InLoc, and to generate reference poses for your own data using SfM. Just download the datasets and you're reading to go! ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    pyntcloud

    pyntcloud

    pyntcloud is a Python library for working with 3D point clouds

    ...Point clouds are one of the most relevant entities for representing three dimensional data these days, along with polygonal meshes (which are just a special case of point clouds with connectivity graph attached). In its simplest form, a point cloud is a set of points in a cartesian coordinate system. Accurate 3D point clouds can nowadays be (easily and cheaply) acquired from different sources. pyntcloud enables simple and interactive exploration of point cloud data, regardless of which sensor was used to generate it or what the use case is. Although it was built for being used on Jupyter Notebooks, the library is suitable for other kinds of uses. pyntcloud is composed of several modules (as independent as possible) that englobe common point cloud processing operations.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    Face Mask Detection

    Face Mask Detection

    Face Mask Detection system based on computer vision and deep learning

    ...The absence of large datasets of ‘with_mask’ images has made this task cumbersome and challenging. Our face mask detector doesn't use any morphed masked images dataset and the model is accurate. Owing to the use of MobileNetV2 architecture, it is computationally efficient, thus making it easier to deploy the model to embedded systems (Raspberry Pi, Google Coral, etc.).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    PyTorch SimCLR

    PyTorch SimCLR

    PyTorch implementation of SimCLR: A Simple Framework

    ...Aside from a few tricks when performing fine-tuning (if the case), it has been shown (many times) that if training for a new task, models initialized with pre-trained weights tend to learn faster and be more accurate then training from scratch using random initialization.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Computer Vision Pretrained Models

    Computer Vision Pretrained Models

    A collection of computer vision pre-trained models

    ...Instead of building a model from scratch to solve a similar problem, we can use the model trained on other problem as a starting point. A pre-trained model may not be 100% accurate in your application. For example, if you want to build a self-learning car. You can spend years building a decent image recognition algorithm from scratch or you can take the inception model (a pre-trained model) from Google which was built on ImageNet data to identify images in those pictures. The model generates bounding boxes and segmentation masks for each instance of an object in the image. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    COCO Annotator

    COCO Annotator

    Web-based image segmentation tool for object detection & localization

    ...It provides many distinct features including the ability to label an image segment (or part of a segment), track object instances, label objects with disconnected visible parts, and efficiently store and export annotations in the well-known COCO format. The annotation process is delivered through an intuitive and customizable interface and provides many tools for creating accurate datasets. Several annotation tools are currently available, with most applications as a desktop installation. Once installed, users can manually define regions in an image and creating a textual description. Generally, objects can be marked by a bounding box, either directly, through a masking tool, or by marking points to define the containing area. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 17
    MLBox

    MLBox

    MLBox is a powerful Automated Machine Learning python library

    MLBox is a powerful Automated Machine Learning python library. Fast reading and distributed data preprocessing/cleaning/formatting. Highly robust feature selection and leak detection. Accurate hyper-parameter optimization in high-dimensional space. State-of-the-art predictive models for classification and regression (Deep Learning, Stacking, LightGBM,...) Prediction with model interpretation. MLBox has been developed and used by many active community members. Your help is very valuable to make it better for everyone.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    myOCR_chung

    myOCR_chung

    my OCR and neural network brain in freebasic

    myOCR brain chung is a small highly accurate OCR char recognition and Ann neural network brain example written in freebasic .
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19

    Root Phenotyping Suite

    Three different software tools for phenotyping plant root images

    ...RTipC is a system for the fully automated detection and classification of root tips in root images obtained either by 2d flat bed scanning or by 3D digital camera imaging. The software provides a robust, efficient and accurate means of phenotyping of roots, by detecting individual root tips and classifying them as belonging to a primary or lateral root. RootGraph is a novel, fully automated and robust approach for the detailed characterization of root traits, based on a graph optimization process. The scheme, firstly, distinguishes primary roots from lateral roots and, secondly, quantifies a broad spectrum of root traits.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    CFNet

    CFNet

    Training a Correlation Filter end-to-end allows lightweight networks

    CFNet is the official implementation of End-to-end representation learning for Correlation Filter based tracking (CVPR 2017) by Luca Bertinetto, Jack Valmadre, João F. Henriques, Andrea Vedaldi, and Philip H. S. Torr. The framework combines correlation filters with deep convolutional neural networks to create an efficient and accurate visual object tracker. Unlike traditional correlation filter trackers that rely on hand-crafted features, CFNet learns feature representations directly from data in an end-to-end fashion. This allows the tracker to be both computationally efficient and robust to appearance changes such as scale, rotation, and illumination variations. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    SSD Keras

    SSD Keras

    A Keras port of single shot MultiBox detector

    This is a Keras port of the SSD model architecture introduced by Wei Liu et al. in the paper SSD: Single Shot MultiBox Detector. Ports of the trained weights of all the original models are provided below. This implementation is accurate, meaning that both the ported weights and models trained from scratch produce the same mAP values as the respective models of the original Caffe implementation. The main goal of this project is to create an SSD implementation that is well documented for those who are interested in a low-level understanding of the model. The provided tutorials, documentation and detailed comments hopefully make it a bit easier to dig into the code and adapt or build upon the model than with most other implementations out there (Keras or otherwise) that provide little to no documentation and comments. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    DIGITS

    DIGITS

    Deep Learning GPU training system

    The NVIDIA Deep Learning GPU Training System (DIGITS) puts the power of deep learning into the hands of engineers and data scientists. DIGITS can be used to rapidly train the highly accurate deep neural network (DNNs) for image classification, segmentation and object detection tasks. DIGITS simplifies common deep learning tasks such as managing data, designing and training neural networks on multi-GPU systems, monitoring performance in real-time with advanced visualizations, and selecting the best performing model from the results browser for deployment. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    The Edge Machine Learning library

    The Edge Machine Learning library

    Machine learning algorithms for edge devices

    ...Making real-time predictions locally on IoT devices without connecting to the cloud requires models that fit in a few kilobytes.These algorithms can train models for classical supervised learning problems with memory requirements that are orders of magnitude lower than other modern ML algorithms. The trained models can be loaded onto edge devices such as IoT devices/sensors, and used to make fast and accurate predictions completely offline. A tool that adapts models trained by above algorithms to be inferred by fixed point arithmetic.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Deep Learning

    Deep Learning

    Deep Learning Book Chinese Translation

    With the help and proofreading of many netizens, the Chinese version was finally published. Although there are still many problems, at least 90% of the content is readable and accurate. We have preserved the meaning of the original book Deep Learning as much as possible and retained the original language of the book. However, our level is limited, and we cannot eliminate the variance of many readers. We still need everyone's advice and help to reduce translation bias together. All you have to do is read, then aggregate your suggestions and raise issues (preferably not one by one). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25

    sgmweka

    Weka wrapper for the SGM toolkit for text classification and modeling.

    Weka wrapper for the SGM toolkit for text classification and modeling. Provides Sparse Generative Models for scalable and accurate text classification and modeling for use in high-speed and large-scale text mining. Has lower time complexity of classification than comparable software due to inference based on sparse model representation and use of an inverted index. The provided .zip file is in the Weka package format, giving access to text classification.
    Leader badge
    Downloads: 29 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next