Showing 16 open source projects for "1 click start"

View related business solutions
  • MyQ Print Management Software Icon
    MyQ Print Management Software

    SAVE TIME WITH PERSONALIZED PRINT SOLUTIONS

    Boost your digital or traditional workplace with MyQ’s secure print and scan solutions that respect your time and help you focus on what you do best.
    Learn More
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • 1
    Vearch

    Vearch

    A distributed system for embedding-based vector retrieval

    ...Vearch implements a high-performance, lockless real-time vector indexing subsystem that utilizes various optimization techniques to support millisecond vector update and retrieval. End-to-end one-click deployment. Through the module of the plugin, a complete default visual search system can be deployed just with one click. Otherwise, you can easily customize your own image, video, or text feature extraction algorithm plugin. This GIF provides a clear demonstration of the project vearch usage and its internal structure. The use of vearch is mainly divided into three steps. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    KerasTuner

    KerasTuner

    A Hyperparameter Tuning Library for Keras

    KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily configure your search space with a define-by-run syntax, then leverage one of the available search algorithms to find the best hyperparameter values for your models. KerasTuner comes with Bayesian Optimization, Hyperband, and Random Search algorithms built-in, and is also designed to be easy for researchers to extend in order to experiment with new search...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    Bootstrap Your Own Latent (BYOL)

    Bootstrap Your Own Latent (BYOL)

    Usable Implementation of "Bootstrap Your Own Latent" self-supervised

    Practical implementation of an astoundingly simple method for self-supervised learning that achieves a new state-of-the-art (surpassing SimCLR) without contrastive learning and having to designate negative pairs. This repository offers a module that one can easily wrap any image-based neural network (residual network, discriminator, policy network) to immediately start benefitting from unlabelled image data. There is now new evidence that batch normalization is key to making this technique work well. A new paper has successfully replaced batch norm with group norm + weight standardization, refuting that batch statistics are needed for BYOL to work. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    mlx

    mlx

    MLX: An array framework for Apple silicon

    MlX offers a local web interface to browse, download, and run ML models via Hugging Face or local sources. It supports searching by tags or tasks, visualization of model metadata, quick inference demos, automatic setup of runtime environments, and works with PyTorch, TensorFlow, and ONNX. Ideal for researchers exploring and testing models via browser.
    Downloads: 0 This Week
    Last Update:
    See Project
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 5
    whisper-timestamped

    whisper-timestamped

    Multilingual Automatic Speech Recognition with word-level timestamps

    Multilingual Automatic Speech Recognition with word-level timestamps and confidence. Whisper is a set of multi-lingual, robust speech recognition models trained by OpenAI that achieve state-of-the-art results in many languages. Whisper models were trained to predict approximate timestamps on speech segments (most of the time with 1-second accuracy), but they cannot originally predict word timestamps. This repository proposes an implementation to predict word timestamps and provide a more...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    ZenML

    ZenML

    Build portable, production-ready MLOps pipelines

    A simple yet powerful open-source framework that scales your MLOps stack with your needs. Set up ZenML in a matter of minutes, and start with all the tools you already use. Gradually scale up your MLOps stack by switching out components whenever your training or deployment requirements change. Keep up with the latest changes in the MLOps world and easily integrate any new developments. Define simple and clear ML workflows without wasting time on boilerplate tooling or infrastructure code. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    DeepCTR

    DeepCTR

    Package of deep-learning based CTR models

    DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can be used to easily build custom models. You can use any complex model with model.fit(), and model.predict(). Provide tf.keras.Model like interface for quick experiment. Provide tensorflow estimator interface for large scale data and distributed training. It is compatible with both tf 1.x and tf 2.x. With the great success of deep learning,DNN-based...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    YOLOv3

    YOLOv3

    Object detection architectures and models pretrained on the COCO data

    Fast, precise and easy to train, YOLOv5 has a long and successful history of real time object detection. Treat YOLOv5 as a university where you'll feed your model information for it to learn from and grow into one integrated tool. You can get started with less than 6 lines of code. with YOLOv5 and its Pytorch implementation. Have a go using our API by uploading your own image and watch as YOLOv5 identifies objects using our pretrained models. Start training your model without being an expert. Students love YOLOv5 for its simplicity and there are many quickstart examples for you to get started within seconds. ...
    Downloads: 82 This Week
    Last Update:
    See Project
  • 9
    Pwnagotchi

    Pwnagotchi

    Deep Reinforcement learning instrumenting bettercap for WiFi pwning

    Pwnagotchi is an A2C-based “AI” powered by bettercap and running on a Raspberry Pi Zero W that learns from its surrounding WiFi environment in order to maximize the crackable WPA key material it captures (either through passive sniffing or by performing deauthentication and association attacks). This material is collected on disk as PCAP files containing any form of handshake supported by hashcat, including full and half WPA handshakes as well as PMKIDs. Instead of merely playing Super Mario...
    Downloads: 5 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 10
    Semantic Segmentation in PyTorch

    Semantic Segmentation in PyTorch

    Semantic segmentation models, datasets & losses implemented in PyTorch

    ...Poly learning rate, where the learning rate is scaled down linearly from the starting value down to zero during training. Considered as the go-to scheduler for semantic segmentation. One Cycle learning rate, for a learning rate LR, we start from LR / 10 up to LR for 30% of the training time, and we scale down to LR / 25 for remaining time, the scaling is done in a cos annealing fashion (see Figure bellow), the momentum is also modified but in the opposite manner starting from 0.95 down to 0.85 and up to 0.95.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Image Super-Resolution (ISR)

    Image Super-Resolution (ISR)

    Super-scale your images and run experiments with Residual Dense

    The goal of this project is to upscale and improve the quality of low-resolution images. This project contains Keras implementations of different Residual Dense Networks for Single Image Super-Resolution (ISR) as well as scripts to train these networks using content and adversarial loss components. Docker scripts and Google Colab notebooks are available to carry training and prediction. Also, we provide scripts to facilitate training on the cloud with AWS and Nvidia-docker with only a few...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    Easy Machine Learning

    Easy Machine Learning

    Easy Machine Learning is a general-purpose dataflow-based system

    Machine learning algorithms have become the key components in many big data applications. However, the full potential of machine learning is still far from being realized because using machine learning algorithms is hard, especially on distributed platforms such as Hadoop and Spark. The key barriers come from not only the implementation of the algorithms themselves but also the processing for applying them to real applications which often involve multiple steps and different algorithms. Our...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    Intel neon

    Intel neon

    Intel® Nervana™ reference deep learning framework

    neon is Intel's reference deep learning framework committed to best performance on all hardware. Designed for ease of use and extensibility. See the new features in our latest release. We want to highlight that neon v2.0.0+ has been optimized for much better performance on CPUs by enabling Intel Math Kernel Library (MKL). The DNN (Deep Neural Networks) component of MKL that is used by neon is provided free of charge and downloaded automatically as part of the neon installation. The gpu...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 14
    Five video classification methods

    Five video classification methods

    Code that accompanies my blog post outlining five video classification

    Classifying video presents unique challenges for machine learning models. As I’ve covered in my previous posts, video has the added (and interesting) property of temporal features in addition to the spatial features present in 2D images. While this additional information provides us more to work with, it also requires different network architectures and, often, adds larger memory and computational demands.We won’t use any optical flow images. This reduces model complexity, training time, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15

    SPAWNN

    SPatial Analysis With self-organizing Neural Networks

    ...Journal of Geographical Systems, 18(1), 1-15. - Hagenauer, J., & Helbich, M. (2013). Contextual neural gas for spatial clustering and analysis. International Journal of Geographical Information Science, 27(2), 251-266.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    ArabicDiacritizer

    ArabicDiacritizer

    An automatic restoration of Arabic diacritic marks

    .... ************** Installation *************** - Extract the archive "ArabicDiacritizer Setup.rar". - Install the application using "Setup.exe". - Put an Arabic text in the Text Box. - Start the diacritization process. If the following problem occured: <Access to the path '..\ArabicDiacritizer v1.0\text.data' is denied> - Access to the path "Program Files\ArabicDiacritizer\ArabicDiacritizer v1.0\", - Right click on "ArabicDiacritizer" - Choose "Run as administrator" For further information, please contact: rebai_ily
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next