Showing 569 open source projects for "python-dpkt"

View related business solutions
  • Cut Data Warehouse Costs up to 54% with BigQuery Icon
    Cut Data Warehouse Costs up to 54% with BigQuery

    Migrate from Snowflake, Databricks, or Redshift with free migration tools. Exabyte scale without the Exabyte price.

    BigQuery delivers up to 54% lower TCO than cloud alternatives. Migrate from legacy or competing warehouses using free BigQuery Migration Service with automated SQL translation. Get serverless scale with no infrastructure to manage, compressed storage, and flexible pricing—pay per query or commit for deeper discounts. New customers get $300 in free credit.
    Try BigQuery Free
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    DeepSeed

    DeepSeed

    Deep learning optimization library making distributed training easy

    DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. DeepSpeed delivers extreme-scale model training for everyone, from data scientists training on massive supercomputers to those training on low-end clusters or even on a single GPU. Using current generation of GPU clusters with hundreds of devices, 3D parallelism of DeepSpeed can efficiently train deep learning models with trillions of parameters. With just a single GPU,...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    Pytorch-toolbelt

    Pytorch-toolbelt

    PyTorch extensions for fast R&D prototyping and Kaggle farming

    A pytorch-toolbelt is a Python library with a set of bells and whistles for PyTorch for fast R&D prototyping and Kaggle farming. Easy model building using flexible encoder-decoder architecture. Modules: CoordConv, SCSE, Hypercolumn, Depthwise separable convolution and more. GPU-friendly test-time augmentation TTA for segmentation and classification. GPU-friendly inference on huge (5000x5000) images.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    PyTorch Geometric Temporal

    PyTorch Geometric Temporal

    Spatiotemporal Signal Processing with Neural Machine Learning Models

    The library consists of various dynamic and temporal geometric deep learning, embedding, and Spatio-temporal regression methods from a variety of published research papers. Moreover, it comes with an easy-to-use dataset loader, train-test splitter and temporal snaphot iterator for dynamic and temporal graphs. The framework naturally provides GPU support. It also comes with a number of benchmark datasets from the epidemiological forecasting, sharing economy, energy production and web traffic...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    Triton Inference Server

    Triton Inference Server

    The Triton Inference Server provides an optimized cloud

    Triton Inference Server is an open-source inference serving software that streamlines AI inferencing. Triton enables teams to deploy any AI model from multiple deep learning and machine learning frameworks, including TensorRT, TensorFlow, PyTorch, ONNX, OpenVINO, Python, RAPIDS FIL, and more. Triton supports inference across cloud, data center, edge, and embedded devices on NVIDIA GPUs, x86 and ARM CPU, or AWS Inferentia. Triton delivers optimized performance for many query types, including real-time, batched, ensembles, and audio/video streaming. Provides Backend API that allows adding custom backends and pre/post-processing operations. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 5
    PySyft

    PySyft

    Data science on data without acquiring a copy

    Most software libraries let you compute over the information you own and see inside of machines you control. However, this means that you cannot compute on information without first obtaining (at least partial) ownership of that information. It also means that you cannot compute using machines without first obtaining control over those machines. This is very limiting to human collaboration and systematically drives the centralization of data, because you cannot work with a bunch of data...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    OpenBB

    OpenBB

    Investment Research for Everyone, Everywhere

    Customize and speed up your analysis, bring your own data, and create instant reports to gain a competitive edge. Whether it’s a CSV file, a private endpoint, an RSS feed, or even embed an SEC filing directly. Chat with financial data using large language models. Don’t waste time reading, create summaries in seconds and ask how that impacts investments. Create your dashboard with your favorite widgets. Create charts directly from raw data in seconds. Create charts directly from raw data in...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    MLRun

    MLRun

    Machine Learning automation and tracking

    MLRun is an open MLOps framework for quickly building and managing continuous ML and generative AI applications across their lifecycle. MLRun integrates into your development and CI/CD environment and automates the delivery of production data, ML pipelines, and online applications, significantly reducing engineering efforts, time to production, and computation resources. MLRun breaks the silos between data, ML, software, and DevOps/MLOps teams, enabling collaboration and fast continuous...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    x-transformers

    x-transformers

    A simple but complete full-attention transformer

    A simple but complete full-attention transformer with a set of promising experimental features from various papers. Proposes adding learned memory key/values prior to attending. They were able to remove feedforwards altogether and attain a similar performance to the original transformers. I have found that keeping the feedforwards and adding the memory key/values leads to even better performance. Proposes adding learned tokens, akin to CLS tokens, named memory tokens, that is passed through...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    Haiku Sonnet for JAX

    Haiku Sonnet for JAX

    JAX-based neural network library

    ...Haiku is a simple neural network library for JAX that enables users to use familiar object-oriented programming models while allowing full access to JAX's pure function transformations. Haiku provides two core tools: a module abstraction, hk.Module, and a simple function transformation, hk.transform. hk.Modules are Python objects that hold references to their own parameters, other modules, and methods that apply functions on user inputs. hk.transform turns functions that use these object-oriented, functionally "impure" modules into pure functions that can be used with jax.jit, jax.grad, jax.pmap, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • $300 in Free Credit for Your Google Cloud Projects Icon
    $300 in Free Credit for Your Google Cloud Projects

    Build, test, and explore on Google Cloud with $300 in free credit. No hidden charges. No surprise bills.

    Launch your next project with $300 in free Google Cloud credit—no hidden charges. Test, build, and deploy without risk. Use your credit across the Google Cloud platform to find what works best for your needs. After your credits are used, continue building with free monthly usage products. Only pay when you're ready to scale. Sign up in minutes and start exploring.
    Start Free Trial
  • 10
    pomegranate

    pomegranate

    Fast, flexible and easy to use probabilistic modelling in Python

    pomegranate is a library for probabilistic modeling defined by its modular implementation and treatment of all models as the probability distributions they are. The modular implementation allows one to easily drop normal distributions into a mixture model to create a Gaussian mixture model just as easily as dropping a gamma and a Poisson distribution into a mixture model to create a heterogeneous mixture. But that's not all! Because each model is treated as a probability distribution,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    FLAML

    FLAML

    A fast library for AutoML and tuning

    FLAML is a lightweight Python library that finds accurate machine learning models automatically, efficiently and economically. It frees users from selecting learners and hyperparameters for each learner. For common machine learning tasks like classification and regression, it quickly finds quality models for user-provided data with low computational resources.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Open Notebook

    Open Notebook

    An Open Source implementation of Notebook LM with more flexibility

    Open Notebook is an open-source, privacy-focused alternative to Google’s Notebook LM that gives users full control over their research and AI workflows. Designed to be self-hosted, it ensures complete data sovereignty by keeping your content local or within your own infrastructure. The platform supports 16+ AI providers—including OpenAI, Anthropic, Ollama, Google, and LM Studio—allowing flexible model choice and cost optimization. Open Notebook enables users to organize and analyze...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 13
    Thinc

    Thinc

    A refreshing functional take on deep learning

    Thinc is a lightweight deep learning library that offers an elegant, type-checked, functional-programming API for composing models, with support for layers defined in other frameworks such as PyTorch, TensorFlow and MXNet. You can use Thinc as an interface layer, a standalone toolkit or a flexible way to develop new models. Previous versions of Thinc have been running quietly in production in thousands of companies, via both spaCy and Prodigy. We wrote the new version to let users compose,...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 14
    lightning AI

    lightning AI

    The most intuitive, flexible, way for researchers to build models

    Build in days not months with the most intuitive, flexible framework for building models and Lightning Apps (ie: ML workflow templates) which "glue" together your favorite ML lifecycle tools. Build models and build/publish end-to-end ML workflows that "glue" your favorite tools together. Models are “easy”, the “glue” work is hard. Lightning Apps are community-built templates that stitch together your favorite ML lifecycle tools into cohesive ML workflows that can run on your laptop or any...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 15
    FiftyOne

    FiftyOne

    The open-source tool for building high-quality datasets

    The open-source tool for building high-quality datasets and computer vision models. Nothing hinders the success of machine learning systems more than poor-quality data. And without the right tools, improving a model can be time-consuming and inefficient. FiftyOne supercharges your machine learning workflows by enabling you to visualize datasets and interpret models faster and more effectively. Improving data quality and understanding your model’s failure modes are the most impactful ways to...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 16
    Albumentations

    Albumentations

    Fast image augmentation library and an easy-to-use wrapper

    Albumentations is a computer vision tool that boosts the performance of deep convolutional neural networks. Albumentations is a Python library for fast and flexible image augmentations. Albumentations efficiently implements a rich variety of image transform operations that are optimized for performance, and does so while providing a concise, yet powerful image augmentation interface for different computer vision tasks, including object classification, segmentation, and detection. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    OpenCV

    OpenCV

    Open Source Computer Vision Library

    ...It enables developers to build real-time vision applications ranging from facial recognition to object tracking. OpenCV supports a wide range of programming languages including C++, Python, and Java, and is optimized for both CPU and GPU operations.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 18
    whisper-timestamped

    whisper-timestamped

    Multilingual Automatic Speech Recognition with word-level timestamps

    Multilingual Automatic Speech Recognition with word-level timestamps and confidence. Whisper is a set of multi-lingual, robust speech recognition models trained by OpenAI that achieve state-of-the-art results in many languages. Whisper models were trained to predict approximate timestamps on speech segments (most of the time with 1-second accuracy), but they cannot originally predict word timestamps. This repository proposes an implementation to predict word timestamps and provide a more...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    Arize Phoenix

    Arize Phoenix

    Uncover insights, surface problems, monitor, and fine tune your LLM

    Phoenix provides ML insights at lightning speed with zero-config observability for model drift, performance, and data quality. Phoenix is an Open Source ML Observability library designed for the Notebook. The toolset is designed to ingest model inference data for LLMs, CV, NLP and tabular datasets. It allows Data Scientists to quickly visualize their model data, monitor performance, track down issues & insights, and easily export to improve. Deep Learning Models (CV, LLM, and Generative)...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    PyTorch Ignite

    PyTorch Ignite

    Library to help with training and evaluating neural networks

    High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently. Less code than pure PyTorch while ensuring maximum control and simplicity. Library approach and no program's control inversion. Use ignite where and when you need. Extensible API for metrics, experiment managers, and other components. The cool thing with handlers is that they offer unparalleled flexibility (compared to, for example, callbacks). Handlers can be any function: e.g....
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    AutoMLOps

    AutoMLOps

    Build MLOps Pipelines in Minutes

    AutoMLOps is a service that generates, provisions, and deploys CI/CD integrated MLOps pipelines, bridging the gap between Data Science and DevOps. AutoMLOps provides a repeatable process that dramatically reduces the time required to build MLOps pipelines. The service generates a containerized MLOps codebase, provides infrastructure-as-code to provision and maintain the underlying MLOps infra, and provides deployment functionalities to trigger and run MLOps pipelines. AutoMLOps gives...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    AtomAI

    AtomAI

    Deep and Machine Learning for Microscopy

    AtomAI is a Pytorch-based package for deep and machine-learning analysis of microscopy data that doesn't require any advanced knowledge of Python or machine learning. The intended audience is domain scientists with a basic understanding of how to use NumPy and Matplotlib. It was developed by Maxim Ziatdinov at Oak Ridge National Lab. The purpose of the AtomAI is to provide an environment that bridges the instrument-specific libraries and general physical analysis by enabling the seamless deployment of machine learning algorithms including deep convolutional neural networks, invariant variational autoencoders, and decomposition/unmixing techniques for image and hyperspectral data analysis. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    RecBole

    RecBole

    A unified, comprehensive and efficient recommendation library

    ...We implement more than 100 commonly used recommendation algorithms and provide formatted copies of 28 recommendation datasets. We support a series of widely adopted evaluation protocols or settings for testing and comparing recommendation algorithms. RecBole is developed based on Python and PyTorch for reproducing and developing recommendation algorithms in a unified, comprehensive and efficient framework for research purpose. It can be installed from pip, conda and source, and is easy to use. We have implemented more than 100 recommender system models, covering four common recommender system categories in RecBole and eight toolkits of RecBole2.0, including General Recommendation, Sequential Recommendation, Context-aware Recommendation, and Knowledge-based Recommendation and sub-packages.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    TensorRT Backend For ONNX

    TensorRT Backend For ONNX

    ONNX-TensorRT: TensorRT backend for ONNX

    ...For previous versions of TensorRT, refer to their respective branches. Building INetwork objects in full dimensions mode with dynamic shape support requires calling the C++ and Python API. Current supported ONNX operators are found in the operator support matrix. For building within docker, we recommend using and setting up the docker containers as instructed in the main (TensorRT repository). Note that this project has a dependency on CUDA. By default the build will look in /usr/local/cuda for the CUDA toolkit installation. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Kubeflow Training Operator

    Kubeflow Training Operator

    Distributed ML Training and Fine-Tuning on Kubernetes

    Kubeflow Training Operator is a Kubernetes-native project for fine-tuning and scalable distributed training of machine learning (ML) models created with various ML frameworks such as PyTorch, TensorFlow, XGBoost, MPI, Paddle, and others.
    Downloads: 0 This Week
    Last Update:
    See Project
MongoDB Logo MongoDB