Showing 564 open source projects for "pam-python"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Automate contact and company data extraction Icon
    Automate contact and company data extraction

    Build lead generation pipelines that pull emails, phone numbers, and company details from directories, maps, social platforms. Full API access.

    Generate leads at scale without building or maintaining scrapers. Use 10,000+ ready-made tools that handle authentication, pagination, and anti-bot protection. Pull data from business directories, social profiles, and public sources, then export to your CRM or database via API. Schedule recurring extractions, enrich existing datasets, and integrate with your workflows.
    Explore Apify Store
  • 1
    DIGITS

    DIGITS

    Deep Learning GPU training system

    The NVIDIA Deep Learning GPU Training System (DIGITS) puts the power of deep learning into the hands of engineers and data scientists. DIGITS can be used to rapidly train the highly accurate deep neural network (DNNs) for image classification, segmentation and object detection tasks. DIGITS simplifies common deep learning tasks such as managing data, designing and training neural networks on multi-GPU systems, monitoring performance in real-time with advanced visualizations, and selecting...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    The Deep Review

    The Deep Review

    A collaboratively written review paper on deep learning, genomics, etc

    This repository is home to the Deep Review, a review article on deep learning in precision medicine. The Deep Review is collaboratively written on GitHub using a tool called Manubot (see below). The project operates on an open contribution model, welcoming contributions from anyone. To see what's incoming, check the open pull requests. For project discussion and planning see the Issues. As of writing, we are aiming to publish an update of the deep review. We will continue to make project...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    PyTorch Book

    PyTorch Book

    PyTorch tutorials and fun projects including neural talk

    This is the corresponding code for the book "The Deep Learning Framework PyTorch: Getting Started and Practical", but it can also be used as a standalone PyTorch Getting Started Guide and Tutorial. The current version of the code is based on pytorch 1.0.1, if you want to use an older version please git checkout v0.4or git checkout v0.3. Legacy code has better python2/python3 compatibility, CPU/GPU compatibility test. The new version of the code has not been fully tested, it has been tested...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Edward

    Edward

    A probabilistic programming language in TensorFlow

    A library for probabilistic modeling, inference, and criticism. Edward is a Python library for probabilistic modeling, inference, and criticism. It is a testbed for fast experimentation and research with probabilistic models, ranging from classical hierarchical models on small data sets to complex deep probabilistic models on large data sets. Edward fuses three fields, Bayesian statistics and machine learning, deep learning, and probabilistic programming.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 5
    Image classification models for Keras

    Image classification models for Keras

    Keras code and weights files for popular deep learning models

    All architectures are compatible with both TensorFlow and Theano, and upon instantiation the models will be built according to the image dimension ordering set in your Keras configuration file at ~/.keras/keras.json. For instance, if you have set image_dim_ordering=tf, then any model loaded from this repository will get built according to the TensorFlow dimension ordering convention, "Width-Height-Depth". Pre-trained weights can be automatically loaded upon instantiation (weights='imagenet'...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    TorchCraft

    TorchCraft

    Connecting Torch to StarCraft

    ...TorchCraft is a BWAPI module that sends StarCraft data out over a ZMQ connection. This lets you parse StarCraft data and interact with BWAPI from anywhere. The TorchCraft client should be installed from C++, Python, or Lua. We provide off-the-shelf solutions for Python and Lua.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Intel neon

    Intel neon

    Intel® Nervana™ reference deep learning framework

    neon is Intel's reference deep learning framework committed to best performance on all hardware. Designed for ease of use and extensibility. See the new features in our latest release. We want to highlight that neon v2.0.0+ has been optimized for much better performance on CPUs by enabling Intel Math Kernel Library (MKL). The DNN (Deep Neural Networks) component of MKL that is used by neon is provided free of charge and downloaded automatically as part of the neon installation. The gpu...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    AI-Blocks

    AI-Blocks

    A powerful and intuitive WYSIWYG to create Machine Learning models

    ...The concept of AI-Blocs is to have a simple scene with draggable objects that have scripts attached to them. The model can be run directly on the editor or be exported to a standalone script that runs on Tensorflow. Variables are parsed from python scripts and can be edited from the AI-Blocs properties panel. To run your model simply press the "Play" button and let the magic happen! The project requires Python and Tensorflow to run projects. You can still create and edit projects without these dependencies. To run AI-Blocs, download the project archive and launch AI-Blocs.exe.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    Tangent

    Tangent

    Source-to-source debuggable derivatives in pure Python

    ...Tangent works on a large and growing subset of Python, provides extra autodiff features other Python ML libraries don't have, has reasonable performance, and is compatible with TensorFlow and NumPy.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Smart Business Texting that Generates Pipeline Icon
    Smart Business Texting that Generates Pipeline

    Create and convert pipeline at scale through industry leading SMS campaigns, automation, and conversation management.

    TextUs is the leading text messaging service provider for businesses that want to engage in real-time conversations with customers, leads, employees and candidates. Text messaging is one of the most engaging ways to communicate with customers, candidates, employees and leads. 1:1, two-way messaging encourages response and engagement. Text messages help teams get 10x the response rate over phone and email. Business text messaging has become a more viable form of communication than traditional mediums. The TextUs user experience is intentionally designed to resemble the familiar SMS inbox, allowing users to easily manage contacts, conversations, and campaigns. Work right from your desktop with the TextUs web app or use the Chrome extension alongside your ATS or CRM. Leverage the mobile app for on-the-go sending and responding.
    Learn More
  • 10
    Deepo

    Deepo

    Set up deep learning environment in a single command line

    Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment, supports almost all commonly used deep learning frameworks, supports GPU acceleration (CUDA and cuDNN included), also works in CPU-only mode, and works on Linux (CPU version/GPU version), Windows (CPU version) and OS X (CPU version). Their Dockerfile generator that allows you to customize your own environment with Lego-like modules, and automatically resolves the dependencies for...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Five video classification methods

    Five video classification methods

    Code that accompanies my blog post outlining five video classification

    Classifying video presents unique challenges for machine learning models. As I’ve covered in my previous posts, video has the added (and interesting) property of temporal features in addition to the spatial features present in 2D images. While this additional information provides us more to work with, it also requires different network architectures and, often, adds larger memory and computational demands.We won’t use any optical flow images. This reduces model complexity, training time, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    NNVM

    NNVM

    Open deep learning compiler stack for cpu, gpu

    ...Automatically generate and optimize tensor operators on more backends. Need support for block sparsity, quantization (1,2,4,8 bit integers, posit), random forests/classical ML, memory planning, MISRA-C compatibility, Python prototyping or all of the above? NNVM flexible design enables all of these things and more.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    AI learning

    AI learning

    AiLearning, data analysis plus machine learning practice

    We actively respond to the Research Open Source Initiative (DOCX) . Open source today is not just open source, but datasets, models, tutorials, and experimental records. We are also exploring other categories of open source solutions and protocols. I hope you will understand this initiative, combine this initiative with your own interests, and do what you can. Everyone's tiny contributions, together, are the entire open source ecosystem. We are iBooker, a large open-source community,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    auto_ml

    auto_ml

    Automated machine learning for analytics & production

    auto_ml is designed for production. Here's an example that includes serializing and loading the trained model, then getting predictions on single dictionaries, roughly the process you'd likely follow to deploy the trained model. Before you go any further, try running the code. Load up some data (either a DataFrame, or a list of dictionaries, where each dictionary is a row of data). Make a column_descriptions dictionary that tells us which attribute name in each row represents the value we’re...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Deep Learning with Keras and Tensorflow

    Deep Learning with Keras and Tensorflow

    Introduction to Deep Neural Networks with Keras and Tensorflow

    Introduction to Deep Neural Networks with Keras and Tensorflow. To date tensorflow comes in two different packages, namely tensorflow and tensorflow-gpu, whether you want to install the framework with CPU-only or GPU support, respectively. NVIDIA Drivers and CuDNN must be installed and configured before hand. Please refer to the official Tensorflow documentation for further details. Since version 0.9 Theano introduced the libgpuarray in the stable release (it was previously only available in...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16

    Chronological Cohesive Units

    The experimental source code for the paper

    The experimental source code for the paper, "A Novel Recommendation Approach Based on Chronological Cohesive Units in Content Consuming"
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Lip Reading

    Lip Reading

    Cross Audio-Visual Recognition using 3D Architectures

    The input pipeline must be prepared by the users. This code is aimed to provide the implementation for Coupled 3D Convolutional Neural Networks for audio-visual matching. Lip-reading can be a specific application for this work. Audio-visual recognition (AVR) has been considered as a solution for speech recognition tasks when the audio is corrupted, as well as a visual recognition method used for speaker verification in multi-speaker scenarios. The approach of AVR systems is to leverage the...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    Machine Learning for OpenCV

    Machine Learning for OpenCV

    M. Beyeler (2017). Machine Learning for OpenCV

    M. Beyeler (2017). Machine Learning for OpenCV: Intelligent image processing with Python. Packt Publishing Ltd., ISBN 978-178398028-4.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Caffe2

    Caffe2

    Caffe2 is a lightweight, modular, and scalable deep learning framework

    Caffe2 is a lightweight, modular, and scalable deep learning framework. Building on the original Caffe, Caffe2 is designed with expression, speed, and modularity in mind. Caffe2 is a deep learning framework that provides an easy and straightforward way for you to experiment with deep learning and leverage community contributions of new models and algorithms. You can bring your creations to scale using the power of GPUs in the cloud or to the masses on mobile with Caffe2’s cross-platform...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20

    Training Image Operators from Samples

    Tools to train Image Operators automatically from a set of samples.

    TRIOS - Training Image Operators from Samples is a set of tools to bring Image Processing closer to scientists in general. It is capable of estimating an operator between two images using only pairs of samples that contain an input image and the desired output. The operator is saved to a file and can be applied to any image.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    TensorFlow on Raspberry Pi

    TensorFlow on Raspberry Pi

    TensorFlow for Raspberry Pi

    TensorFlow on Raspberry Pi.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    DSTK - DataScience ToolKit

    DSTK - DataScience ToolKit

    DSTK - DataScience ToolKit for All of Us

    ...While JASP offers more statistical features, DSTK tends to be a broad solution workbench, including text analysis and predictive analytics features. Of course you may specify JASP for advanced data editing and RapidMiner for advanced prediction modeling. DSTK is written in C#, Java and Python to interface with R, NLTK, and Weka. It can be expanded with plugins using R Scripts. We have also created plugins for more statistical functions, and Big Data Analytics with Microsoft Azure HDInsights (Spark Server) with Livy. License: R, RStudio, NLTK, SciPy, SKLearn, MatPlotLib, Weka, ... each has their own licenses.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Scattertext 0.2.1

    Scattertext 0.2.1

    Beautiful visualizations of how language differs among document types

    A tool for finding distinguishing terms in corpora and displaying them in an interactive HTML scatter plot. Points corresponding to terms are selectively labeled so that they don't overlap with other labels or points.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24

    PyDaMelo

    Python-compatible Data mining elementary objects

    An attempt at offering machine learning and data mining algorithms at the finest grain we are able to, easy to combine together through Python scripting to glue together the Lego-like bricks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Python Machine Learning book

    Python Machine Learning book

    The book code repository and info resource

    What you can expect are 400 pages rich in useful material just about everything you need to know to get started with machine learning. From theory to the actual code that you can directly put into action! This is not yet just another "this is how scikit-learn works" book. I aim to explain all the underlying concepts, tell you everything you need to know in terms of best practices and caveats, and we will put those concepts into action mainly using NumPy, scikit-learn, and Theano. This is not...
    Downloads: 0 This Week
    Last Update:
    See Project