Showing 37 open source projects for "vector"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Automate contact and company data extraction Icon
    Automate contact and company data extraction

    Build lead generation pipelines that pull emails, phone numbers, and company details from directories, maps, social platforms. Full API access.

    Generate leads at scale without building or maintaining scrapers. Use 10,000+ ready-made tools that handle authentication, pagination, and anti-bot protection. Pull data from business directories, social profiles, and public sources, then export to your CRM or database via API. Schedule recurring extractions, enrich existing datasets, and integrate with your workflows.
    Explore Apify Store
  • 1
    GPU Machine Learning Library. This library aims to provide machine learning researchers and practitioners with a high performance library by taking advantage of the GPU enormous computational power. The library is developed in C++ and CUDA.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    EEG Seizure Prediction

    EEG Seizure Prediction

    Seizure prediction from EEG data using machine learning

    The Kaggle-EEG project is a machine learning solution developed for seizure prediction from EEG data, achieving 3rd place in the Kaggle/University of Melbourne Seizure Prediction competition. The repository processes EEG data to predict seizures by training machine learning models, specifically using SVM (Support Vector Machine) and RUS Boosted Tree ensemble models. The framework processes EEG data into features, trains models, and outputs predictions, handling temporal data to ensure accuracy.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Swift AI

    Swift AI

    The Swift machine learning library

    ...We recommend that you read the docs carefully for detailed instructions on using the various components of Swift AI. The example projects are another great resource for seeing real-world usage of these tools. Swift AI currently depends on Apple's Accelerate framework for vector/matrix calculations and digital signal processing.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Scikit Learn
    Machine Learning framework in Python
    Downloads: 11 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5

    libVMR

    VMR - machine learning library

    ...The library is intended for users, with machine learning skills. libVMR provides an effective framework for the research and development of data mining and predictive analytics. libVMR is based on the most popular neural network model with a higher generalization ability from kernel tricks - vector machine by Reshetov (VMR). The library has been designed to learn from data sets. Typical applications here are pattern recognition ( binary classification).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    BudgetedSVM

    BudgetedSVM

    BudgetedSVM: A C++ Toolbox for Large-scale, Non-linear Classification

    We present BudgetedSVM, a C++ toolbox containing highly optimized implementations of three recently proposed algorithms for scalable training of Support Vector Machine (SVM) approximators: Adaptive Multi-hyperplane Machines (AMM), Budgeted Stochastic Gradient Descent (BSGD), and Low-rank Linearization SVM (LLSVM). BudgetedSVM trains models with accuracy comparable to LibSVM in time comparable to LibLinear, as it allows solving highly non-linear classi fication problems with millions of high-dimensional examples within minutes on a regular personal computer. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7

    drvq

    dimensionality-recursive vector quantization

    drvq is a C++ library implementation of dimensionality-recursive vector quantization, a fast vector quantization method in high-dimensional Euclidean spaces under arbitrary data distributions. It is an approximation of k-means that is practically constant in data size and applies to arbitrarily high dimensions but can only scale to a few thousands of centroids. As a by-product of training, a tree structure performs either exact or approximate quantization on trained centroids, the latter being not very precise but extremely fast. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Swarm Wars

    Swarm Wars

    Safety in numbers.

    ...They can select mates, and they can gather and distribute food and material. This behavior is controlled by a genetically evolved neural net augmented with online back propagation learning. The back propagation learning uses a reward vector and plasticity matrix that is evolved as part of the genome. Long story short, the AI is pretty frickin' sophisticated. Players can take control of organisms, trade resources and organisms in a market, and aid evolution by selective breeding.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Stanford Machine Learning Course

    Stanford Machine Learning Course

    machine learning course programming exercise

    ...It includes implementations of a variety of fundamental algorithms using Python and MATLAB/Octave. The repository covers a broad set of topics such as linear regression, logistic regression, neural networks, clustering, support vector machines, and recommender systems. Each folder corresponds to a specific algorithm or concept, making it easy for learners to navigate and practice. The exercises serve as practical, hands-on reinforcement of theoretical concepts taught in the course. This collection is valuable for students and practitioners who want to strengthen their skills in machine learning through coding exercises.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 10
    This project contains weka packages of neural networks algorithms implementations like Learning Vector Quantizer (LVQ) and Self-organizing Maps (SOM). For more information about weka, please visit http://www.cs.waikato.ac.nz/~ml/weka/
    Leader badge
    Downloads: 38 This Week
    Last Update:
    See Project
  • 11
    HSSVM(Hyper-Sphere Support Vector Machines) is a software for solving multi-classification problem, implemented by Java.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    SVM# is a svm(support vector machine) classification implemented in C#. The project contains both train and predict modules.
    Downloads: 0 This Week
    Last Update:
    See Project