Showing 202 open source projects for "python neural network"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Hivemind

    Hivemind

    Decentralized deep learning in PyTorch. Built to train models

    ...Its intended usage is training one large model on hundreds of computers from different universities, companies, and volunteers. Distributed training without a master node: Distributed Hash Table allows connecting computers in a decentralized network. Fault-tolerant backpropagation: forward and backward passes succeed even if some nodes are unresponsive or take too long to respond. Decentralized parameter averaging: iteratively aggregate updates from multiple workers without the need to synchronize across the entire network. Train neural networks of arbitrary size: parts of their layers are distributed across the participants with the Decentralized Mixture-of-Experts. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    Lightweight' GAN

    Lightweight' GAN

    Implementation of 'lightweight' GAN, proposed in ICLR 2021

    ...Augmentation is essential for Lightweight GAN to work effectively in a low data setting. You can test and see how your images will be augmented before they pass into a neural network (if you use augmentation). The general recommendation is to use suitable augs for your data and as many as possible, then after some time of training disable the most destructive (for image) augs. You can turn on automatic mixed precision with one flag --amp. You should expect it to be 33% faster and save up to 40% memory. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    Axon

    Axon

    Nx-powered Neural Networks

    ...You should be able to use any of the APIs without dependencies on others. By decoupling the APIs, Axon gives you full control over each aspect of creating and training a neural network. At the lowest-level, Axon consists of a number of modules with functional implementations of common methods in deep learning.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    CLIP-as-service

    CLIP-as-service

    Embed images and sentences into fixed-length vectors

    CLIP-as-service is a low-latency high-scalability service for embedding images and text. It can be easily integrated as a microservice into neural search solutions. Serve CLIP models with TensorRT, ONNX runtime and PyTorch w/o JIT with 800QPS[*]. Non-blocking duplex streaming on requests and responses, designed for large data and long-running tasks. Horizontally scale up and down multiple CLIP models on single GPU, with automatic load balancing. Easy-to-use. No learning curve, minimalist...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    Gen.jl

    Gen.jl

    A general-purpose probabilistic programming system

    ...Users can also hand-code parts of their models that demand better performance. Neural network inference is fast, but can be inaccurate on out-of-distribution data, and requires expensive training.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 6
    Basic Pitch

    Basic Pitch

    A lightweight audio-to-MIDI converter with pitch bend detection

    Basic Pitch is a Python library for Automatic Music Transcription (AMT), using lightweight neural network developed by Spotify's Audio Intelligence Lab. It's small, easy-to-use, pip install-able and npm install-able via its sibling repo. Basic Pitch may be simple, but it's is far from "basic"! basic-pitch is efficient and easy to use, and its multi pitch support, its ability to generalize across instruments, and its note accuracy compete with much larger and more resource-hungry AMT systems. ...
    Downloads: 25 This Week
    Last Update:
    See Project
  • 7
    Synapse Machine Learning

    Synapse Machine Learning

    Simple and distributed Machine Learning

    ...SynapseML builds on Apache Spark and SparkML to enable new kinds of machine learning, analytics, and model deployment workflows. SynapseML adds many deep learning and data science tools to the Spark ecosystem, including seamless integration of Spark Machine Learning pipelines with the Open Neural Network Exchange (ONNX), LightGBM, The Cognitive Services, Vowpal Wabbit, and OpenCV. These tools enable powerful and highly-scalable predictive and analytical models for a variety of data sources. SynapseML also brings new networking capabilities to the Spark Ecosystem. With the HTTP on Spark project, users can embed any web service into their SparkML models. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    Intel Extension for PyTorch

    Intel Extension for PyTorch

    A Python package for extending the official PyTorch

    Intel® Extension for PyTorch* extends PyTorch* with up-to-date features optimizations for an extra performance boost on Intel hardware. Optimizations take advantage of Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Vector Neural Network Instructions (VNNI) and Intel® Advanced Matrix Extensions (Intel® AMX) on Intel CPUs as well as Intel Xe Matrix Extensions (XMX) AI engines on Intel discrete GPUs. Moreover, Intel® Extension for PyTorch* provides easy GPU acceleration for Intel discrete GPUs through the PyTorch* xpu device.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 9
    DGL

    DGL

    Python package built to ease deep learning on graph

    Build your models with PyTorch, TensorFlow or Apache MXNet. Fast and memory-efficient message passing primitives for training Graph Neural Networks. Scale to giant graphs via multi-GPU acceleration and distributed training infrastructure. DGL empowers a variety of domain-specific projects including DGL-KE for learning large-scale knowledge graph embeddings, DGL-LifeSci for bioinformatics and cheminformatics, and many others. We are keen to bringing graphs closer to deep learning researchers....
    Downloads: 5 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    MiniSom

    MiniSom

    MiniSom is a minimalistic implementation of the Self Organizing Maps

    MiniSom is a minimalistic and Numpy-based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial Neural Network able to convert complex, nonlinear statistical relationships between high-dimensional data items into simple geometric relationships on a low-dimensional display. Minisom is designed to allow researchers to easily build on top of it and to give students the ability to quickly grasp its details. The project initially aimed for a minimalistic implementation of the Self-Organizing Map (SOM) algorithm, focusing on simplicity in features, dependencies, and code style. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 11
    TensorRT

    TensorRT

    C++ library for high performance inference on NVIDIA GPUs

    ...It includes a deep learning inference optimizer and runtime that delivers low latency and high throughput for deep learning inference applications. TensorRT-based applications perform up to 40X faster than CPU-only platforms during inference. With TensorRT, you can optimize neural network models trained in all major frameworks, calibrate for lower precision with high accuracy, and deploy to hyperscale data centers, embedded, or automotive product platforms. TensorRT is built on CUDA®, NVIDIA’s parallel programming model, and enables you to optimize inference leveraging libraries, development tools, and technologies in CUDA-X™ for artificial intelligence, autonomous machines, high-performance computing, and graphics. ...
    Downloads: 15 This Week
    Last Update:
    See Project
  • 12
    Materials Discovery: GNoME

    Materials Discovery: GNoME

    AI discovers 520000 stable inorganic crystal structures for research

    Materials Discovery (GNoME) is a large-scale research initiative by Google DeepMind focused on applying graph neural networks to accelerate the discovery of stable inorganic crystal materials. The project centers on Graph Networks for Materials Exploration (GNoME), a message-passing neural network architecture trained on density functional theory (DFT) data to predict material stability and energy formation. Using GNoME, DeepMind identified 381,000 new stable materials, later expanding the dataset to include over 520,000 materials within 1 meV/atom of the convex hull as of August 2024. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    PyGAD

    PyGAD

    Source code of PyGAD, Python 3 library for building genetic algorithms

    PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine learning algorithms. It supports Keras and PyTorch. PyGAD supports optimizing both single-objective and multi-objective problems. PyGAD supports different types of crossover, mutation, and parent selection. PyGAD allows different types of problems to be optimized using the genetic algorithm by customizing the fitness function.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 14
    PyTorch Geometric Temporal

    PyTorch Geometric Temporal

    Spatiotemporal Signal Processing with Neural Machine Learning Models

    The library consists of various dynamic and temporal geometric deep learning, embedding, and Spatio-temporal regression methods from a variety of published research papers. Moreover, it comes with an easy-to-use dataset loader, train-test splitter and temporal snaphot iterator for dynamic and temporal graphs. The framework naturally provides GPU support. It also comes with a number of benchmark datasets from the epidemiological forecasting, sharing economy, energy production and web traffic...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    ktrain

    ktrain

    ktrain is a Python library that makes deep learning AI more accessible

    ktrain is a Python library that makes deep learning and AI more accessible and easier to apply. ktrain is a lightweight wrapper for the deep learning library TensorFlow Keras (and other libraries) to help build, train, and deploy neural networks and other machine learning models. Inspired by ML framework extensions like fastai and ludwig, ktrain is designed to make deep learning and AI more accessible and easier to apply for both newcomers and experienced practitioners. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    DeepDetect

    DeepDetect

    Deep Learning API and Server in C++14 support for Caffe, PyTorch

    ...While the Open Source Deep Learning Server is the core element, with REST API, and multi-platform support that allows training & inference everywhere, the Deep Learning Platform allows higher level management for training neural network models and using them as if they were simple code snippets. Ready for applications of image tagging, object detection, segmentation, OCR, Audio, Video, Text classification, CSV for tabular data and time series. Neural network templates for the most effective architectures for GPU, CPU, and Embedded devices. Training in a few hours and with small data thanks to 25+ pre-trained models. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    AmpliGraph

    AmpliGraph

    Python library for Representation Learning on Knowledge Graphs

    Open source library based on TensorFlow that predicts links between concepts in a knowledge graph. AmpliGraph is a suite of neural machine learning models for relational Learning, a branch of machine learning that deals with supervised learning on knowledge graphs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    The SpeechBrain Toolkit

    The SpeechBrain Toolkit

    A PyTorch-based Speech Toolkit

    SpeechBrain is an open-source and all-in-one conversational AI toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains. SpeechBrain supports state-of-the-art methods for end-to-end speech recognition, including models based on CTC, CTC+attention, transducers, transformers, and neural language models relying on recurrent neural networks and transformers. Speaker recognition is already deployed in a...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 19
    Darts

    Darts

    A python library for easy manipulation and forecasting of time series

    darts is a Python library for easy manipulation and forecasting of time series. It contains a variety of models, from classics such as ARIMA to deep neural networks. The models can all be used in the same way, using fit() and predict() functions, similar to scikit-learn. The library also makes it easy to backtest models, combine the predictions of several models, and take external data into account.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    PyTorch Ignite

    PyTorch Ignite

    Library to help with training and evaluating neural networks

    High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently. Less code than pure PyTorch while ensuring maximum control and simplicity. Library approach and no program's control inversion. Use ignite where and when you need. Extensible API for metrics, experiment managers, and other components. The cool thing with handlers is that they offer unparalleled flexibility (compared to, for example, callbacks). Handlers can be any function: e.g....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Homemade Machine Learning

    Homemade Machine Learning

    Python examples of popular machine learning algorithms

    ...The purpose is pedagogical: you’ll see linear regression, logistic regression, k-means clustering, neural nets, decision trees, etc., built in Python using fundamentals like NumPy and Matplotlib, not hidden behind API calls. It is well suited for learners who want to move beyond library usage to understand how algorithms operate internally—how cost functions, gradients, updates and predictions work.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 22
    POT

    POT

    Python Optimal Transport

    This open source Python library provides several solvers for optimization problems related to Optimal Transport for signal, image processing and machine learning.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 23
    MLJAR Studio

    MLJAR Studio

    Python package for AutoML on Tabular Data with Feature Engineering

    We are working on new way for visual programming. We developed a desktop application called MLJAR Studio. It is a notebook-based development environment with interactive code recipes and a managed Python environment. All running locally on your machine. We are waiting for your feedback. The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. It is designed to save time for a data scientist. It abstracts the common way to preprocess the data,...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 24
    higgsfield

    higgsfield

    Fault-tolerant, highly scalable GPU orchestration

    Higgsfield is an open-source, fault-tolerant, highly scalable GPU orchestration, and a machine learning framework designed for training models with billions to trillions of parameters, such as Large Language Models (LLMs).
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    Foolbox

    Foolbox

    Python toolbox to create adversarial examples

    ...Foolbox provides a large collection of state-of-the-art gradient-based and decision-based adversarial attacks. Catch bugs before running your code thanks to extensive type annotations in Foolbox. Foolbox is a Python library that lets you easily run adversarial attacks against machine learning models like deep neural networks. It is built on top of EagerPy and works natively with models in PyTorch, TensorFlow, and JAX.
    Downloads: 0 This Week
    Last Update:
    See Project