Showing 10 open source projects for "trees"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1
    River ML

    River ML

    Online machine learning in Python

    River is a Python library for online machine learning. It aims to be the most user-friendly library for doing machine learning on streaming data. River is the result of a merger between creme and scikit-multiflow.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    MLJAR Studio

    MLJAR Studio

    Python package for AutoML on Tabular Data with Feature Engineering

    We are working on new way for visual programming. We developed a desktop application called MLJAR Studio. It is a notebook-based development environment with interactive code recipes and a managed Python environment. All running locally on your machine. We are waiting for your feedback. The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. It is designed to save time for a data scientist. It abstracts the common way to preprocess the data,...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    Homemade Machine Learning

    Homemade Machine Learning

    Python examples of popular machine learning algorithms

    ...Each algorithm is accompanied by mathematical explanations, visualizations (often via Jupyter notebooks), and interactive demos so you can tweak parameters, data, and observe outcomes in real time. The purpose is pedagogical: you’ll see linear regression, logistic regression, k-means clustering, neural nets, decision trees, etc., built in Python using fundamentals like NumPy and Matplotlib, not hidden behind API calls. It is well suited for learners who want to move beyond library usage to understand how algorithms operate internally—how cost functions, gradients, updates and predictions work.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Thinc

    Thinc

    A refreshing functional take on deep learning

    Thinc is a lightweight deep learning library that offers an elegant, type-checked, functional-programming API for composing models, with support for layers defined in other frameworks such as PyTorch, TensorFlow and MXNet. You can use Thinc as an interface layer, a standalone toolkit or a flexible way to develop new models. Previous versions of Thinc have been running quietly in production in thousands of companies, via both spaCy and Prodigy. We wrote the new version to let users compose,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Inventors: Validate Your Idea, Protect It and Gain Market Advantages Icon
    Inventors: Validate Your Idea, Protect It and Gain Market Advantages

    SenseIP is ideal for individual inventors, startups, and businesses

    senseIP is an AI innovation platform for inventors, automating any aspect of IP from the moment you have an idea. You can have it researched for uniqueness and protected; quickly and effortlessly, without expensive attorneys. Built for business success while securing your competitive edge.
    Learn More
  • 5
    mlforecast

    mlforecast

    Scalable machine learning for time series forecasting

    mlforecast is a time-series forecasting framework built around machine-learning models, designed to make forecasting both efficient and scalable. It lets you apply any regressor that follows the typical scikit-learn API, for example, gradient-boosted trees or linear models, to time-series data by automating much of the messy feature engineering and data preparation. Instead of writing custom code to build lagged features, rolling statistics, and date-based predictors, mlforecast generates those automatically based on a simple configuration. It supports multi-series forecasting, meaning you can train one model that forecasts many time series at once (common in retail, demand forecasting, etc.), rather than one model per series. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    MLPACK is a C++ machine learning library with emphasis on scalability, speed, and ease-of-use. Its aim is to make machine learning possible for novice users by means of a simple, consistent API, while simultaneously exploiting C++ language features to provide maximum performance and flexibility for expert users. * More info + downloads: https://mlpack.org * Git repo: https://github.com/mlpack/mlpack
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Awesome Decision Tree Papers

    Awesome Decision Tree Papers

    A collection of research papers on decision, classification, etc.

    A collection of research papers on decision, classification and regression trees with implementations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Machine-Learning

    Machine-Learning

    kNN, decision tree, Bayesian, logistic regression, SVM

    Machine-Learning is a repository focused on practical machine learning implementations in Python, covering classic algorithms like k-Nearest Neighbors, decision trees, naive Bayes, logistic regression, support vector machines, linear and tree-based regressions, and likely corresponding code examples and documentation. It targets learners or practitioners who want to understand and implement ML algorithms from scratch or via standard libraries, gaining hands-on experience rather than relying solely on black-box frameworks. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    pySTEP or Python Strongly Typed gEnetic Programming: A light Genetic Programming API that allows the user to easily evolve populations of trees with precise grammatical and structural constraints.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Reach Your Audience with Rise Vision, the #1 Cloud Digital Signage Software Solution Icon
    Reach Your Audience with Rise Vision, the #1 Cloud Digital Signage Software Solution

    K-12 Schools, Higher Education, Businesses, Restaurants

    Rise Vision is the #1 digital signage company, offering easy-to-use cloud digital signage software compatible with any player across multiple screens. Forget about static displays. Save time and boost sales with 500+ customizable content templates for your screens. If you ever need help, get free training and exceptionally fast support.
    Learn More
  • 10

    PyVocabularyTree

    A vocabulary tree for image classification using OpenCV

    A vocabulary tree for image classification have been designed to be integrated in mobile robotic applications. It is a learning schema based on decission trees, bags of features and inverted files. The design provides training and optimization parameters that have been characterized using several detectors and descriptors for several input datasets. Evaluation tests performed on public image databases allow to compare obtained results with previously published literature. All the tools and resources used in this project are Open Source licensed.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next