Showing 22 open source projects for "speech"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    whisper-timestamped

    whisper-timestamped

    Multilingual Automatic Speech Recognition with word-level timestamps

    Multilingual Automatic Speech Recognition with word-level timestamps and confidence. Whisper is a set of multi-lingual, robust speech recognition models trained by OpenAI that achieve state-of-the-art results in many languages. Whisper models were trained to predict approximate timestamps on speech segments (most of the time with 1-second accuracy), but they cannot originally predict word timestamps.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    The SpeechBrain Toolkit

    The SpeechBrain Toolkit

    A PyTorch-based Speech Toolkit

    ...Spectral masking, spectral mapping, and time-domain enhancement are different methods already available within SpeechBrain. Separation methods such as Conv-TasNet, DualPath RNN, and SepFormer are implemented as well. SpeechBrain provides efficient and GPU-friendly speech augmentation pipelines and acoustic features extraction.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    NVIDIA NeMo

    NVIDIA NeMo

    Toolkit for conversational AI

    NVIDIA NeMo, part of the NVIDIA AI platform, is a toolkit for building new state-of-the-art conversational AI models. NeMo has separate collections for Automatic Speech Recognition (ASR), Natural Language Processing (NLP), and Text-to-Speech (TTS) models. Each collection consists of prebuilt modules that include everything needed to train on your data. Every module can easily be customized, extended, and composed to create new conversational AI model architectures. Conversational AI architectures are typically large and require a lot of data and compute for training. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    Diffgram

    Diffgram

    Training data (data labeling, annotation, workflow) for all data types

    ...Annotation is required because raw media is considered to be unstructured and not usable without it. That’s why training data is required for many modern machine learning use cases including computer vision, natural language processing and speech recognition.
    Downloads: 7 This Week
    Last Update:
    See Project
  • Premier Construction Software Icon
    Premier Construction Software

    Premier is a global leader in financial construction ERP software.

    Rated #1 Construction Accounting Software by Forbes Advisor in 2022 & 2023. Our modern SAAS solution is designed to meet the needs of General Contractors, Developers/Owners, Homebuilders & Specialty Contractors.
    Learn More
  • 5
    Transformers

    Transformers

    State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX

    ...Text, for tasks like text classification, information extraction, question answering, summarization, translation, text generation, in over 100 languages. Images, for tasks like image classification, object detection, and segmentation. Audio, for tasks like speech recognition and audio classification. Transformers provides APIs to quickly download and use those pretrained models on a given text, fine-tune them on your own datasets and then share them with the community on our model hub. At the same time, each python module defining an architecture is fully standalone and can be modified to enable quick research experiments.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 6
    spaCy models

    spaCy models

    Models for the spaCy Natural Language Processing (NLP) library

    spaCy is designed to help you do real work, to build real products, or gather real insights. The library respects your time, and tries to avoid wasting it. It's easy to install, and its API is simple and productive. spaCy excels at large-scale information extraction tasks. It's written from the ground up in carefully memory-managed Cython. If your application needs to process entire web dumps, spaCy is the library you want to be using. Since its release in 2015, spaCy has become an industry...
    Downloads: 15 This Week
    Last Update:
    See Project
  • 7
    TorchAudio

    TorchAudio

    Data manipulation and transformation for audio signal processing

    The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the same philosophy of providing strong GPU acceleration, having a focus on trainable features through the autograd system, and having consistent style (tensor names and dimension names). Therefore, it is primarily a machine learning library and not a general signal processing library. The benefits of PyTorch can be seen in torchaudio through having all the computations be through PyTorch...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 8
    flair

    flair

    A very simple framework for state-of-the-art NLP

    ...Flair allows you to apply our state-of-the-art natural language processing (NLP) models to your text, such as named entity recognition (NER), sentiment analysis, part-of-speech tagging (PoS), special support for biomedical texts, sense disambiguation and classification, with support for a rapidly growing number of languages. A text embedding library. Flair has simple interfaces that allow you to use and combine different word and document embeddings, including our proposed Flair embeddings and various transformers. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    sense2vec

    sense2vec

    Contextually-keyed word vectors

    sense2vec (Trask et. al, 2015) is a nice twist on word2vec that lets you learn more interesting and detailed word vectors. This library is a simple Python implementation for loading, querying and training sense2vec models. For more details, check out our blog post. To explore the semantic similarities across all Reddit comments of 2015 and 2019, see the interactive demo.
    Downloads: 5 This Week
    Last Update:
    See Project
  • AI-First Supply Chain Management Icon
    AI-First Supply Chain Management

    Supply chain managers, executives, and businesses seeking AI-powered solutions to optimize planning, operations, and decision-making across the supply

    Logility is a market-leading provider of AI-first supply chain management solutions engineered to help organizations build sustainable digital supply chains that improve people’s lives and the world we live in. The company’s approach is designed to reimagine supply chain planning by shifting away from traditional “what happened” processes to an AI-driven strategy that combines the power of humans and machines to predict and be ready for what’s coming. Logility’s fully integrated, end-to-end platform helps clients know faster, turn uncertainty into opportunity, and transform the supply chain from a cost center to an engine for growth.
    Learn More
  • 10
    Kashgari

    Kashgari

    Kashgari is a production-level NLP Transfer learning framework

    Kashgari is a simple and powerful NLP Transfer learning framework, build a state-of-art model in 5 minutes for named entity recognition (NER), part-of-speech tagging (PoS), and text classification tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    PORORO

    PORORO

    Platform of neural models for natural language processing

    pororo performs Natural Language Processing and Speech-related tasks. It is easy to solve various subtasks in the natural language and speech processing field by simply passing the task name. Recognized speech sentences using the trained model. Currently English, Korean and Chinese support. Get vector or find similar words and entities from pretrained model using Wikipedia.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    PaddlePaddle models

    PaddlePaddle models

    Pre-trained and Reproduced Deep Learning Models

    Pre-trained and Reproduced Deep Learning Models ("Flying Paddle" official model library, including a variety of academic frontier and industrial scene verification of deep learning models) Flying Paddle's industrial-level model library includes a large number of mainstream models that have been polished by industrial practice for a long time and models that have won championships in international competitions; it provides many scenarios for semantic understanding, image classification, target detection, image segmentation, text recognition, speech synthesis, etc. An end-to-end development kit that meets the needs of enterprises for low-cost development and rapid integration. The model library of Flying Paddle is an industrial-level model library tailored around the actual R&D process of domestic enterprises, serving enterprises in many fields such as energy, finance, industry, and agriculture.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Delta ML

    Delta ML

    Deep learning based natural language and speech processing platform

    DELTA is a deep learning-based end-to-end natural language and speech processing platform. DELTA aims to provide easy and fast experiences for using, deploying, and developing natural language processing and speech models for both academia and industry use cases. DELTA is mainly implemented using TensorFlow and Python 3. DELTA has been used for developing several state-of-the-art algorithms for publications and delivering real production to serve millions of users.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Tensor2Tensor

    Tensor2Tensor

    Library of deep learning models and datasets

    Deep Learning (DL) has enabled the rapid advancement of many useful technologies, such as machine translation, speech recognition and object detection. In the research community, one can find code open-sourced by the authors to help in replicating their results and further advancing deep learning. However, most of these DL systems use unique setups that require significant engineering effort and may only work for a specific problem or architecture, making it hard to run new experiments and compare the results. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Magnitude

    Magnitude

    A fast, efficient universal vector embedding utility package

    A feature-packed Python package and vector storage file format for utilizing vector embeddings in machine learning models in a fast, efficient, and simple manner developed by Plasticity. It is primarily intended to be a simpler / faster alternative to Gensim but can be used as a generic key-vector store for domains outside NLP. It offers unique features like out-of-vocabulary lookups and streaming of large models over HTTP. Published in our paper at EMNLP 2018 and available on arXiv.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    DeepLearning

    DeepLearning

    Deep Learning (Flower Book) mathematical derivation

    ...At the same time, it also introduces deep learning techniques used by practitioners in the industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling and practical methods, and investigates topics such as natural language processing, Applications in speech recognition, computer vision, online recommender systems, bioinformatics, and video games. Finally, the Deep Learning book provides research directions covering theoretical topics including linear factor models, autoencoders, representation learning, structured probabilistic models, etc.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    NLP-progress

    NLP-progress

    Repository to track the progress in Natural Language Processing (NLP)

    ...This document aims to track the progress in Natural Language Processing (NLP) and give an overview of the state-of-the-art (SOTA) across the most common NLP tasks and their corresponding datasets. It aims to cover both traditional and core NLP tasks such as dependency parsing and part-of-speech tagging as well as more recent ones such as reading comprehension and natural language inference. The main objective is to provide the reader with a quick overview of benchmark datasets and the state-of-the-art for their task of interest, which serves as a stepping stone for further research. To this end, if there is a place where results for a task are already published and regularly maintained, such as a public leaderboard, the reader will be pointed there.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Deep Learning Drizzle

    Deep Learning Drizzle

    Drench yourself in Deep Learning, Reinforcement Learning

    Drench yourself in Deep Learning, Reinforcement Learning, Machine Learning, Computer Vision, and NLP by learning from these exciting lectures! Optimization courses which form the foundation for ML, DL, RL. Computer Vision courses which are DL & ML heavy. Speech recognition courses which are DL heavy. Structured Courses on Geometric, Graph Neural Networks. Section on Autonomous Vehicles. Section on Computer Graphics with ML/DL focus.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Tensorpack

    Tensorpack

    A Neural Net Training Interface on TensorFlow, with focus on speed

    Tensorpack is a neural network training interface based on TensorFlow v1. Uses TensorFlow in the efficient way with no extra overhead. On common CNNs, it runs training 1.2~5x faster than the equivalent Keras code. Your training can probably gets faster if written with Tensorpack. Scalable data-parallel multi-GPU / distributed training strategy is off-the-shelf to use. Squeeze the best data loading performance of Python with tensorpack.dataflow. Symbolic programming (e.g. tf.data) does not...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Deepvoice3_pytorch

    Deepvoice3_pytorch

    PyTorch implementation of convolutional neural networks

    An open source implementation of Deep Voice 3: Scaling Text-to-Speech with Convolutional Sequence Learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    anaGo

    anaGo

    Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition

    anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as named entity recognition (NER), part-of-speech tagging (POS tagging), semantic role labeling (SRL) and so on. Unlike traditional sequence labeling solver, anaGo doesn't need to define any language-dependent features. Thus, we can easily use anaGo for any language. In anaGo, the simplest type of model is the Sequence model. Sequence model includes essential methods like fit, score, analyze and save/load. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Lip Reading

    Lip Reading

    Cross Audio-Visual Recognition using 3D Architectures

    ...This code is aimed to provide the implementation for Coupled 3D Convolutional Neural Networks for audio-visual matching. Lip-reading can be a specific application for this work. Audio-visual recognition (AVR) has been considered as a solution for speech recognition tasks when the audio is corrupted, as well as a visual recognition method used for speaker verification in multi-speaker scenarios. The approach of AVR systems is to leverage the extracted information from one modality to improve the recognition ability of the other modality by complementing the missing information. The essential problem is to find the correspondence between the audio and visual streams, which is the goal of this work. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next