Showing 50 open source projects for "raylib-5.x"

View related business solutions
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • Leverage AI to Automate Medical Coding Icon
    Leverage AI to Automate Medical Coding

    Medical Coding Solution

    As a healthcare provider, you should be paid promptly for the services you provide to patients. Slow, inefficient, and error-prone manual coding keeps you from the financial peace you deserve. XpertDox’s autonomous coding solution accelerates the revenue cycle so you can focus on providing great healthcare.
    Learn More
  • 1
    x-transformers

    x-transformers

    A simple but complete full-attention transformer

    A simple but complete full-attention transformer with a set of promising experimental features from various papers. Proposes adding learned memory key/values prior to attending. They were able to remove feedforwards altogether and attain a similar performance to the original transformers. I have found that keeping the feedforwards and adding the memory key/values leads to even better performance. Proposes adding learned tokens, akin to CLS tokens, named memory tokens, that is passed through...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Interpretable machine learning

    Interpretable machine learning

    Book about interpretable machine learning

    This book is about interpretable machine learning. Machine learning is being built into many products and processes of our daily lives, yet decisions made by machines don't automatically come with an explanation. An explanation increases the trust in the decision and in the machine learning model. As the programmer of an algorithm you want to know whether you can trust the learned model. Did it learn generalizable features? Or are there some odd artifacts in the training data which the...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 3
    EconML

    EconML

    Python Package for ML-Based Heterogeneous Treatment Effects Estimation

    ...At the core of many data-driven personalized decision scenarios is the estimation of heterogeneous treatment effects: what is the causal effect of an intervention on an outcome of interest for a sample with a particular set of features? In a nutshell, this toolkit is designed to measure the causal effect of some treatment variable(s) T on an outcome variable Y, controlling for a set of features X, W and how does that effect vary as a function of X.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    PyTensor

    PyTensor

    Python library for defining and optimizing mathematical expressions

    PyTensor is a fork of Aesara, a Python library for defining, optimizing, and efficiently evaluating mathematical expressions involving multi-dimensional arrays. PyTensor is based on Theano, which has been powering large-scale computationally intensive scientific investigations since 2007. A hackable, pure-Python codebase. Extensible graph framework is suitable for rapid development of custom operators and symbolic optimizations. Implements an extensible graph transpilation framework that...
    Downloads: 0 This Week
    Last Update:
    See Project
  • eProcurement Software Icon
    eProcurement Software

    Enterprises and companies seeking a solution to manage all their procurement operations and processes

    eBuyerAssist by Eyvo is a cloud-based procurement solution designed for businesses of all sizes and industries. Fully modular and scalable, it streamlines the entire procurement lifecycle—from requisition to fulfillment. The platform includes powerful tools for strategic sourcing, supplier management, warehouse operations, and contract oversight. Additional modules cover purchase orders, approval workflows, inventory and asset management, customer orders, budget control, cost accounting, invoice matching, vendor credit checks, and risk analysis. eBuyerAssist centralizes all procurement functions into a single, easy-to-use system—improving visibility, control, and efficiency across your organization. Whether you're aiming to reduce costs, enhance compliance, or align procurement with broader business goals, eBuyerAssist helps you get there faster, smarter, and with measurable results.
    Learn More
  • 5
    tf2onnx

    tf2onnx

    Convert TensorFlow, Keras, Tensorflow.js and Tflite models to ONNX

    tf2onnx converts TensorFlow (tf-1.x or tf-2.x), keras, tensorflow.js and tflite models to ONNX via command line or python API. Note: tensorflow.js support was just added. While we tested it with many tfjs models from tfhub, it should be considered experimental. TensorFlow has many more ops than ONNX and occasionally mapping a model to ONNX creates issues. tf2onnx will use the ONNX version installed on your system and installs the latest ONNX version if none is found.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Causal ML

    Causal ML

    Uplift modeling and causal inference with machine learning algorithms

    ...It provides a standard interface that allows users to estimate the Conditional Average Treatment Effect (CATE) or Individual Treatment Effect (ITE) from experimental or observational data. Essentially, it estimates the causal impact of intervention T on outcome Y for users with observed features X, without strong assumptions on the model form. An important lever to increase ROI in an advertising campaign is to target the ad to the set of customers who will have a favorable response in a given KPI such as engagement or sales. CATE identifies these customers by estimating the effect of the KPI from ad exposure at the individual level from A/B experiments or historical observational data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    TensorFlow Model Garden

    TensorFlow Model Garden

    Models and examples built with TensorFlow

    ...To improve the transparency and reproducibility of our models, training logs on TensorBoard.dev are also provided for models to the extent possible though not all models are suitable. A flexible and lightweight library that users can easily use or fork when writing customized training loop code in TensorFlow 2.x. It seamlessly integrates with tf.distribute and supports running on different device types (CPU, GPU, and TPU).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    ktrain

    ktrain

    ktrain is a Python library that makes deep learning AI more accessible

    ...With only a few lines of code, ktrain allows you to easily and quickly. ktrain purposely pins to a lower version of transformers to include support for older versions of TensorFlow. If you need a newer version of transformers, it is usually safe for you to upgrade transformers, as long as you do it after installing ktrain. As of v0.30.x, TensorFlow installation is optional and only required if training neural networks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    The SpeechBrain Toolkit

    The SpeechBrain Toolkit

    A PyTorch-based Speech Toolkit

    ...SpeechBrain supports state-of-the-art methods for end-to-end speech recognition, including models based on CTC, CTC+attention, transducers, transformers, and neural language models relying on recurrent neural networks and transformers. Speaker recognition is already deployed in a wide variety of realistic applications. SpeechBrain provides different models for speaker recognition, including X-vector, ECAPA-TDNN, PLDA, and contrastive learning. Spectral masking, spectral mapping, and time-domain enhancement are different methods already available within SpeechBrain. Separation methods such as Conv-TasNet, DualPath RNN, and SepFormer are implemented as well. SpeechBrain provides efficient and GPU-friendly speech augmentation pipelines and acoustic features extraction.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 10
    openTSNE

    openTSNE

    Extensible, parallel implementations of t-SNE

    openTSNE is a modular Python implementation of t-Distributed Stochasitc Neighbor Embedding (t-SNE) [1], a popular dimensionality-reduction algorithm for visualizing high-dimensional data sets. openTSNE incorporates the latest improvements to the t-SNE algorithm, including the ability to add new data points to existing embeddings [2], massive speed improvements [3] [4] [5], enabling t-SNE to scale to millions of data points, and various tricks to improve the global alignment of the resulting visualizations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    fastai

    fastai

    Deep learning library

    fastai is a deep learning library which provides practitioners with high-level components that can quickly and easily provide state-of-the-art results in standard deep learning domains, and provides researchers with low-level components that can be mixed and matched to build new approaches. It aims to do both things without substantial compromises in ease of use, flexibility, or performance. This is possible thanks to a carefully layered architecture, which expresses common underlying...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    TensorFlow Addons

    TensorFlow Addons

    Useful extra functionality for TensorFlow 2.x maintained by SIG-addons

    ...If you would like to maintain something, please feel free to submit a PR. We encourage multiple owners for all submodules. TensorFlow Addons is actively working towards forward compatibility with TensorFlow 2.x.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    Conscious Artificial Intelligence

    Conscious Artificial Intelligence

    It's possible for machines to become self-aware.

    This project is a quest for conscious artificial intelligence. A number of prototypes will be developed as the project progresses. This project has 2 subprojects: Object Pascal based CAI NEURAL API - https://github.com/joaopauloschuler/neural-api Python based K-CAI NEURAL API - https://github.com/joaopauloschuler/k-neural-api A video from the first prototype has been made: http://www.youtube.com/watch?v=qH-IQgYy9zg Above video shows a popperian agent collecting mining ore from 3...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 14
    SMILI

    SMILI

    Scientific Visualisation Made Easy

    The Simple Medical Imaging Library Interface (SMILI), pronounced 'smilie', is an open-source, light-weight and easy-to-use medical imaging viewer and library for all major operating systems. The main sMILX application features for viewing n-D images, vector images, DICOMs, anonymizing, shape analysis and models/surfaces with easy drag and drop functions. It also features a number of standard processing algorithms for smoothing, thresholding, masking etc. images and models, both with...
    Leader badge
    Downloads: 11 This Week
    Last Update:
    See Project
  • 15
    GNNPCSAFT

    GNNPCSAFT

    Smart Thermodynamic Modeling with Graph Neural Networks

    The GNNPCSAFT app is an implementation of our project that focuses on using Graph Neural Networks (GNN) to estimate the pure-component parameters of the Equation of State PC-SAFT. We developed this app so the scientific community can access the model's results easily. In this app, the estimated pure-component parameters can be used to calculate thermodynamic properties and compare them with experimental data from the ThermoML Archive. To install the GNNPCSAFT app, download the...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 16
    PoseidonQ  - AI/ML Based QSAR Modeling

    PoseidonQ - AI/ML Based QSAR Modeling

    ML based QSAR Modelling And Translation of Model to Deployable WebApps

    - This Software was made with an intention to make QSAR building more efficient and reproducible. - Published in ACS, Journal of Chemical Information and Modeling . Link : https://pubs.acs.org/doi/10.1021/acs.jcim.4c02372 - Simple to use and no compromise on essential features necessary to make reliable QSAR models. - From Generating Reliable ML Based QSAR Models to Developing Your Own QSAR WebApp. For any feedback or queries, contact kabeermuzammil614@gmail.com - Available on Windows...
    Downloads: 10 This Week
    Last Update:
    See Project
  • 17
    Uranie

    Uranie

    Uranie is CEA's uncertainty analysis platform, based on ROOT

    Uranie is a sensitivity and uncertainty analysis plateform based on the ROOT framework (http://root.cern.ch) . It is developed at CEA, the French Atomic Energy Commission (http://www.cea.fr). It provides various tools for: - data analysis - sampling - statistical modeling - optimisation - sensitivity analysis - uncertainty analysis - running code on high performance computers - etc. Thanks to ROOT, it is easily scriptable in CINT (c++ like syntax) and Python. Is is...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 18
    GNNPCSAFT Web App

    GNNPCSAFT Web App

    Smart Thermodynamic Modeling with Graph Neural Networks

    The GNNPCSAFT Web App is an implementation of our project that focuses on using Graph Neural Networks (GNN) to estimate the pure-component parameters of the Equation of State PC-SAFT. We developed this app so the scientific community can access the model's results easily. In this app, the estimated pure-component parameters can be used to calculate thermodynamic properties and compare them with experimental data from the ThermoML Archive. More info on github repository.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    Zylthra

    Zylthra

    Zylthra: A PyQt6 app to generate synthetic datasets with DataLLM.

    Welcome to Zylthra, a powerful Python-based desktop application built with PyQt6, designed to generate synthetic datasets using the DataLLM API from data.mostly.ai. This tool allows users to create custom datasets by defining columns, configuring generation parameters, and saving setups for reuse, all within a sleek, dark-themed interface.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    PyTorch Implementation of SDE Solvers

    PyTorch Implementation of SDE Solvers

    Differentiable SDE solvers with GPU support and efficient sensitivity

    This library provides stochastic differential equation (SDE) solvers with GPU support and efficient backpropagation. examples/demo.ipynb gives a short guide on how to solve SDEs, including subtle points such as fixing the randomness in the solver and the choice of noise types. examples/latent_sde.py learns a latent stochastic differential equation, as in Section 5 of [1]. The example fits an SDE to data, whilst regularizing it to be like an Ornstein-Uhlenbeck prior process. The model can be loosely viewed as a variational autoencoder with its prior and approximate posterior being SDEs. The program outputs figures to the path specified by <TRAIN_DIR>. Training should stabilize after 500 iterations with the default hyperparameters. examples/sde_gan.py learns an SDE as a GAN, as in [2], [3]. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    Transformer Reinforcement Learning X

    Transformer Reinforcement Learning X

    A repo for distributed training of language models with Reinforcement

    trlX is a distributed training framework designed from the ground up to focus on fine-tuning large language models with reinforcement learning using either a provided reward function or a reward-labeled dataset. Training support for Hugging Face models is provided by Accelerate-backed trainers, allowing users to fine-tune causal and T5-based language models of up to 20B parameters, such as facebook/opt-6.7b, EleutherAI/gpt-neox-20b, and google/flan-t5-xxl. For models beyond 20B parameters,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    MLPACK is a C++ machine learning library with emphasis on scalability, speed, and ease-of-use. Its aim is to make machine learning possible for novice users by means of a simple, consistent API, while simultaneously exploiting C++ language features to provide maximum performance and flexibility for expert users. * More info + downloads: https://mlpack.org * Git repo: https://github.com/mlpack/mlpack
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Sockeye

    Sockeye

    Sequence-to-sequence framework, focused on Neural Machine Translation

    ...Developers may be interested in our developer guidelines. Starting with version 3.0.0, Sockeye is also based on PyTorch. We maintain backwards compatibility with MXNet models of version 2.3.x with 3.0.x. If MXNet 2.x is installed, Sockeye can run both with PyTorch or MXNet. All models trained with 2.3.x (using MXNet) can be converted to models running with PyTorch using the converter CLI (sockeye.mx_to_pt).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    DeepCTR

    DeepCTR

    Package of deep-learning based CTR models

    ...Provide tf.keras.Model like interface for quick experiment. Provide tensorflow estimator interface for large scale data and distributed training. It is compatible with both tf 1.x and tf 2.x. With the great success of deep learning,DNN-based techniques have been widely used in CTR prediction task. The data in CTR estimation task usually includes high sparse,high cardinality categorical features and some dense numerical features. Since DNN are good at handling dense numerical features,we usually map the sparse categorical features to dense numerical through embedding technique.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    StudioGAN

    StudioGAN

    StudioGAN is a Pytorch library providing implementations of networks

    ...StudioGAN is a self-contained library that provides 7 GAN architectures, 9 conditioning methods, 4 adversarial losses, 13 regularization modules, 6 augmentation modules, 8 evaluation metrics, and 5 evaluation backbones. Among these configurations, we formulate 30 GANs as representatives. Each modularized option is managed through a configuration system that works through a YAML file.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next