Showing 74 open source projects for "prc-tools"

View related business solutions
  • Deploy Apps in Seconds with Cloud Run Icon
    Deploy Apps in Seconds with Cloud Run

    Host and run your applications without the need to manage infrastructure. Scales up from and down to zero automatically.

    Cloud Run is the fastest way to deploy containerized apps. Push your code in Go, Python, Node.js, Java, or any language and Cloud Run builds and deploys it automatically. Get fast autoscaling, pay only when your code runs, and skip the infrastructure headaches. Two million requests free per month. And new customers get $300 in free credit.
    Try Cloud Run Free
  • Enterprise-grade ITSM, for every business Icon
    Enterprise-grade ITSM, for every business

    Give your IT, operations, and business teams the ability to deliver exceptional services—without the complexity.

    Freshservice is an intuitive, AI-powered platform that helps IT, operations, and business teams deliver exceptional service without the usual complexity. Automate repetitive tasks, resolve issues faster, and provide seamless support across the organization. From managing incidents and assets to driving smarter decisions, Freshservice makes it easy to stay efficient and scale with confidence.
    Try it Free
  • 1
    Core ML Tools

    Core ML Tools

    Core ML tools contain supporting tools for Core ML model conversion

    Use Core ML Tools (coremltools) to convert machine learning models from third-party libraries to the Core ML format. This Python package contains the supporting tools for converting models from training libraries. Core ML is an Apple framework to integrate machine learning models into your app. Core ML provides a unified representation for all models.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    lightning AI

    lightning AI

    The most intuitive, flexible, way for researchers to build models

    Build in days not months with the most intuitive, flexible framework for building models and Lightning Apps (ie: ML workflow templates) which "glue" together your favorite ML lifecycle tools. Build models and build/publish end-to-end ML workflows that "glue" your favorite tools together. Models are “easy”, the “glue” work is hard. Lightning Apps are community-built templates that stitch together your favorite ML lifecycle tools into cohesive ML workflows that can run on your laptop or any cluster. Find templates (Lightning Apps), modify them and publish your own. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    scikit-learn

    scikit-learn

    Machine learning in Python

    scikit-learn is an open source Python module for machine learning built on NumPy, SciPy and matplotlib. It offers simple and efficient tools for predictive data analysis and is reusable in various contexts.
    Downloads: 16 This Week
    Last Update:
    See Project
  • 4
    ZenML

    ZenML

    Build portable, production-ready MLOps pipelines

    ...Write portable ML code and switch from experimentation to production in seconds. Manage all your favorite MLOps tools in one place with ZenML's plug-and-play integrations. Prevent vendor lock-in by writing extensible, tooling-agnostic, and infrastructure-agnostic code. Run your ML workflows anywhere: local, on-premises, or in the cloud environment of your choice. Keep yourself open to new tools - ZenML is easily extensible and forever open-source!
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build on Google Cloud with $300 in Free Credit Icon
    Build on Google Cloud with $300 in Free Credit

    New to Google Cloud? Get $300 in free credit to explore Compute Engine, BigQuery, Cloud Run, Vertex AI, and 150+ other products.

    Start your next project with $300 in free Google Cloud credit. Spin up VMs, run containers, query exabytes in BigQuery, or build AI apps with Vertex AI and Gemini. Once your credits are used, keep building with 20+ products with free monthly usage, including Compute Engine, Cloud Storage, GKE, and Cloud Run functions. Sign up to start building right away.
    Start Free Trial
  • 5
    imbalanced-learn

    imbalanced-learn

    A Python Package to Tackle the Curse of Imbalanced Datasets in ML

    Imbalanced-learn (imported as imblearn) is an open source, MIT-licensed library relying on scikit-learn (imported as sklearn) and provides tools when dealing with classification with imbalanced classes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    AutoMLOps

    AutoMLOps

    Build MLOps Pipelines in Minutes

    ...The service generates a containerized MLOps codebase, provides infrastructure-as-code to provision and maintain the underlying MLOps infra, and provides deployment functionalities to trigger and run MLOps pipelines. AutoMLOps gives flexibility over the tools and technologies used in the MLOps pipelines, allowing users to choose from a wide range of options for artifact repositories, build tools, provisioning tools, orchestration frameworks, and source code repositories. AutoMLOps can be configured to either use existing infra, or provision new infra, including source code repositories for versioning the generated MLOps codebase, build configs and triggers, artifact repositories for storing docker containers, storage buckets, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Tensorforce

    Tensorforce

    A TensorFlow library for applied reinforcement learning

    Tensorforce is an open-source deep reinforcement learning framework built on TensorFlow, emphasizing modularized design and straightforward usability for applied research and practice.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 8
    Orion

    Orion

    A machine learning library for detecting anomalies in signals

    Orion is a machine-learning library built for unsupervised time series anomaly detection. Such signals are generated by a wide variety of systems, few examples include telemetry data generated by satellites, signals from wind turbines, and even stock market price tickers. We built this to provide one place where users can find the latest and greatest in machine learning and deep learning world including our own innovations. Abstract away from the users the nitty-gritty about preprocessing,...
    Downloads: 19 This Week
    Last Update:
    See Project
  • 9
    supervision

    supervision

    We write your reusable computer vision tools

    We write your reusable computer vision tools. Whether you need to load your dataset from your hard drive, draw detections on an image or video, or count how many detections are in a zone. You can count on us.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Cut Cloud Costs with Google Compute Engine Icon
    Cut Cloud Costs with Google Compute Engine

    Save up to 91% with Spot VMs and get automatic sustained-use discounts. One free VM per month, plus $300 in credits.

    Save on compute costs with Compute Engine. Reduce your batch jobs and workload bill 60-91% with Spot VMs. Compute Engine's committed use offers customers up to 70% savings through sustained use discounts. Plus, you get one free e2-micro VM monthly and $300 credit to start.
    Try Compute Engine
  • 10
    Gradio

    Gradio

    Create UIs for your machine learning model in Python in 3 minutes

    Gradio is the fastest way to demo your machine learning model with a friendly web interface so that anyone can use it, anywhere! Gradio can be installed with pip. Creating a Gradio interface only requires adding a couple lines of code to your project. You can choose from a variety of interface types to interface your function. Gradio can be embedded in Python notebooks or presented as a webpage. A Gradio interface can automatically generate a public link you can share with colleagues that...
    Downloads: 18 This Week
    Last Update:
    See Project
  • 11
    sktime

    sktime

    A unified framework for machine learning with time series

    ...Currently, this includes time series classification, regression, clustering, annotation, and forecasting. It comes with time series algorithms and scikit-learn compatible tools to build, tune and validate time series models. Our objective is to enhance the interoperability and usability of the time series analysis ecosystem in its entirety. sktime provides a unified interface for distinct but related time series learning tasks. It features dedicated time series algorithms and tools for composite model building such as pipelining, ensembling, tuning, and reduction, empowering users to apply an algorithm designed for one task to another.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    marimo

    marimo

    A reactive notebook for Python

    ...Run one cell and marimo reacts by automatically running affected cells, eliminating the error-prone chore of managing the notebook state. marimo's reactive UI elements, like data frame GUIs and plots, make working with data feel refreshingly fast, futuristic, and intuitive. Version with git, run as Python scripts, import symbols from a notebook into other notebooks or Python files, and lint or format with your favorite tools. You'll always be able to reproduce your collaborators' results. Notebooks are executed in a deterministic order, with no hidden state, delete a cell and marimo deletes its variables while updating affected cells.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 13
    Semantic Router

    Semantic Router

    Superfast AI decision making and processing of multi-modal data

    ...Rather than waiting for slow, unreliable LLM generations to make tool-use or safety decisions, we use the magic of semantic vector space — routing our requests using semantic meaning. Combining LLMs with deterministic rules means we can be confident that our AI systems behave as intended. Cramming agent tools into the limited context window is expensive, slow, and fundamentally limited. Semantic Router enables lightning-fast and cheap tool usage that can scale to many thousands of tools. LLMs are slow, yet we use them for every decision in agentic use-cases. Semantic Router swaps slow LLM calls for superfast route decisions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Stable Baselines3

    Stable Baselines3

    PyTorch version of Stable Baselines

    ...These algorithms will make it easier for the research community and industry to replicate, refine, and identify new ideas, and will create good baselines to build projects on top of. We expect these tools will be used as a base around which new ideas can be added, and as a tool for comparing a new approach against existing ones. We also hope that the simplicity of these tools will allow beginners to experiment with a more advanced toolset, without being buried in implementation details.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    FiftyOne

    FiftyOne

    The open-source tool for building high-quality datasets

    The open-source tool for building high-quality datasets and computer vision models. Nothing hinders the success of machine learning systems more than poor-quality data. And without the right tools, improving a model can be time-consuming and inefficient. FiftyOne supercharges your machine learning workflows by enabling you to visualize datasets and interpret models faster and more effectively. Improving data quality and understanding your model’s failure modes are the most impactful ways to boost the performance of your model. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 16
    TensorFlow Probability

    TensorFlow Probability

    Probabilistic reasoning and statistical analysis in TensorFlow

    ...Since TFP inherits the benefits of TensorFlow, you can build, fit, and deploy a model using a single language throughout the lifecycle of model exploration and production. TFP is open source and available on GitHub. Tools to build deep probabilistic models, including probabilistic layers and a `JointDistribution` abstraction. Variational inference and Markov chain Monte Carlo. A wide selection of probability distributions and bijectors. Optimizers such as Nelder-Mead, BFGS, and SGLD.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Mlxtend

    Mlxtend

    A library of extension and helper modules for Python's data analysis

    Mlxtend (machine learning extensions) is a Python library of useful tools for day-to-day data science tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Arize Phoenix

    Arize Phoenix

    Uncover insights, surface problems, monitor, and fine tune your LLM

    Phoenix provides ML insights at lightning speed with zero-config observability for model drift, performance, and data quality. Phoenix is an Open Source ML Observability library designed for the Notebook. The toolset is designed to ingest model inference data for LLMs, CV, NLP and tabular datasets. It allows Data Scientists to quickly visualize their model data, monitor performance, track down issues & insights, and easily export to improve. Deep Learning Models (CV, LLM, and Generative)...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 19
    HDBSCAN

    HDBSCAN

    A high performance implementation of HDBSCAN clustering

    HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates the result to find a clustering that gives the best stability over epsilon. This allows HDBSCAN to find clusters of varying densities (unlike DBSCAN), and be more robust to parameter selection. In practice this means that HDBSCAN returns a good clustering straight away with little or no parameter tuning -- and the primary parameter, minimum cluster...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    TensorFlow Model Optimization Toolkit

    TensorFlow Model Optimization Toolkit

    A toolkit to optimize ML models for deployment for Keras & TensorFlow

    ...Choose the model and optimization tool depending on your task. In many cases, pre-optimized models can improve the efficiency of your application. Try the post-training tools to optimize an already-trained TensorFlow model. Use training-time optimization tools and learn about the techniques.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Advanced Solutions Lab

    Advanced Solutions Lab

    This repos contains notebooks for the Advanced Solutions Lab

    This repository contains Jupyter notebooks meant to be run on Vertex AI. This is maintained by Google Cloud’s Advanced Solutions Lab (ASL) team. Vertex AI is the next-generation AI Platform on the Google Cloud Platform. The material covered in this repo will take a software engineer with no exposure to machine learning to an advanced level.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Transformers

    Transformers

    State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX

    Transformers provides APIs and tools to easily download and train state-of-the-art pre-trained models. Using pre-trained models can reduce your compute costs, carbon footprint, and save you the time and resources required to train a model from scratch. These models support common tasks in different modalities. Text, for tasks like text classification, information extraction, question answering, summarization, translation, text generation, in over 100 languages.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    AWS Neuron

    AWS Neuron

    Powering Amazon custom machine learning chips

    AWS Neuron is a software development kit (SDK) for running machine learning inference using AWS Inferentia chips. It consists of a compiler, run-time, and profiling tools that enable developers to run high-performance and low latency inference using AWS Inferentia-based Amazon EC2 Inf1 instances. Using Neuron developers can easily train their machine learning models on any popular framework such as TensorFlow, PyTorch, and MXNet, and run it optimally on Amazon EC2 Inf1 instances. You can continue to use the same ML frameworks you use today and migrate your software onto Inf1 instances with minimal code changes and without tie-in to vendor-specific solutions. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 24
    Featuretools

    Featuretools

    An open source python library for automated feature engineering

    ...Featuretools come with a library of low-level functions that can be stacked to create features. You can build and share your own custom primitives to be reused on any dataset. Featuretools works alongside tools you already use to build machine learning pipelines. You can load in pandas' data frames and automatically create meaningful features in a fraction of the time it would take to do so manually.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    MLflow

    MLflow

    Open source platform for the machine learning lifecycle

    MLflow is a platform to streamline machine learning development, including tracking experiments, packaging code into reproducible runs, and sharing and deploying models. MLflow offers a set of lightweight APIs that can be used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you currently run ML code (e.g. in notebooks, standalone applications or the cloud).
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next
MongoDB Logo MongoDB