Showing 5 open source projects for "playing cards python"

View related business solutions
  • Cut Cloud Costs with Google Compute Engine Icon
    Cut Cloud Costs with Google Compute Engine

    Save up to 91% with Spot VMs and get automatic sustained-use discounts. One free VM per month, plus $300 in credits.

    Save on compute costs with Compute Engine. Reduce your batch jobs and workload bill 60-91% with Spot VMs. Compute Engine's committed use offers customers up to 70% savings through sustained use discounts. Plus, you get one free e2-micro VM monthly and $300 credit to start.
    Try Compute Engine
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 1
    Evaluate

    Evaluate

    A library for easily evaluating machine learning models and datasets

    Evaluate is a library that makes evaluating and comparing models and reporting their performance easier and more standardized.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    huggingface_hub

    huggingface_hub

    The official Python client for the Huggingface Hub

    The huggingface_hub library allows you to interact with the Hugging Face Hub, a platform democratizing open-source Machine Learning for creators and collaborators. Discover pre-trained models and datasets for your projects or play with the thousands of machine-learning apps hosted on the Hub. You can also create and share your own models, datasets, and demos with the community. The huggingface_hub library provides a simple way to do all these things with Python.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    Gym

    Gym

    Toolkit for developing and comparing reinforcement learning algorithms

    Gym by OpenAI is a toolkit for developing and comparing reinforcement learning algorithms. It supports teaching agents, everything from walking to playing games like Pong or Pinball. Open source interface to reinforce learning tasks. The gym library provides an easy-to-use suite of reinforcement learning tasks. Gym provides the environment, you provide the algorithm. You can write your agent using your existing numerical computation library, such as TensorFlow or Theano. It makes no...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Deep Reinforcement Learning for Keras

    Deep Reinforcement Learning for Keras

    Deep Reinforcement Learning for Keras.

    keras-rl implements some state-of-the-art deep reinforcement learning algorithms in Python and seamlessly integrates with the deep learning library Keras. Furthermore, keras-rl works with OpenAI Gym out of the box. This means that evaluating and playing around with different algorithms is easy. Of course, you can extend keras-rl according to your own needs. You can use built-in Keras callbacks and metrics or define your own.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Go from Data Warehouse to Data and AI platform with BigQuery Icon
    Go from Data Warehouse to Data and AI platform with BigQuery

    Build, train, and run ML models with simple SQL. Automate data prep, analysis, and predictions with built-in AI assistance from Gemini.

    BigQuery is more than a data warehouse—it's an autonomous data-to-AI platform. Use familiar SQL to train ML models, run time-series forecasts, and generate AI-powered insights with native Gemini integration. Built-in agents handle data engineering and data science workflows automatically. Get $300 in free credit, query 1 TB, and store 10 GB free monthly.
    Try BigQuery Free
  • 5
    Pronac MediaMonkey Extension

    Pronac MediaMonkey Extension

    Recommends music based upon your current taste.

    A music recommendation engine. It is meant to be an add-on for popular media players like Winamp, Amarok, Rhythmbox or Banshee. Currently supports only MediaMonkey Player. Downlaod, extract and run "pronac.exe". Play the first song from the Now Playing list, it'll recommend you next songs from the same list. NOTE: MAKE SURE THAT SONG SHUFFLE IS TURNED OFF WHILE USING PRONAC. Based upon K-Nearest Neighbor Machine Learning Algorithm, K-Fold Cross Validation and EchoNest for audio features.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
MongoDB Logo MongoDB