Showing 15 open source projects for "base"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 1
    PyTorch Forecasting

    PyTorch Forecasting

    Time series forecasting with PyTorch

    ...The goal is to provide a high-level API with maximum flexibility for professionals and reasonable defaults for beginners. A time series dataset class that abstracts handling variable transformations, missing values, randomized subsampling, multiple history lengths, etc. A base model class that provides basic training of time series models along with logging in tensorboard and generic visualizations such actual vs predictions and dependency plots. Multiple neural network architectures for timeseries forecasting that have been enhanced for real-world deployment and come with in-built interpretation capabilities. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    NGBoost

    NGBoost

    Natural Gradient Boosting for Probabilistic Prediction

    ngboost is a Python library that implements Natural Gradient Boosting, as described in "NGBoost: Natural Gradient Boosting for Probabilistic Prediction". It is built on top of Scikit-Learn and is designed to be scalable and modular with respect to the choice of proper scoring rule, distribution, and base learner. A didactic introduction to the methodology underlying NGBoost is available in this slide deck.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    SSD in PyTorch 1.0

    SSD in PyTorch 1.0

    High quality, fast, modular reference implementation of SSD in PyTorch

    This repository implements SSD (Single Shot MultiBox Detector). The implementation is heavily influenced by the projects ssd.pytorch, pytorch-ssd and maskrcnn-benchmark. This repository aims to be the code base for research based on SSD. Multi-GPU training and inference: We use DistributedDataParallel, you can train or test with arbitrary GPU(s), the training schema will change accordingly. Add your own modules without pain. We abstract backbone, Detector, BoxHead, BoxPredictor, etc. You can replace every component with your own code without changing the code base. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    AutoKeras

    AutoKeras

    AutoML library for deep learning

    ...AutoKeras supports several tasks with extremely simple interface. AutoKeras would search for the best detailed configuration for you. Moreover, you can override the base classes to create your own block.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Say goodbye to broken revenue funnels and poor customer experiences Icon
    Say goodbye to broken revenue funnels and poor customer experiences

    Connect and coordinate your data, signals, tools, and people at every step of the customer journey.

    LeanData is a Demand Management solution that supports all go-to-market strategies such as account-based sales development, geo-based territories, and more. LeanData features a visual, intuitive workflow native to Salesforce that enables users to view their entire lead flow in one interface. LeanData allows users to access the drag-and-drop feature to route their leads. LeanData also features an algorithms match that uses multiple fields in Salesforce.
    Learn More
  • 5
    Lightweight' GAN

    Lightweight' GAN

    Implementation of 'lightweight' GAN, proposed in ICLR 2021

    Implementation of 'lightweight' GAN proposed in ICLR 2021, in Pytorch. The main contribution of the paper is a skip-layer excitation in the generator, paired with autoencoding self-supervised learning in the discriminator. Quoting the one-line summary "converge on single gpu with few hours' training, on 1024 resolution sub-hundred images". Augmentation is essential for Lightweight GAN to work effectively in a low data setting. You can test and see how your images will be augmented before...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    Stable Baselines3

    Stable Baselines3

    PyTorch version of Stable Baselines

    ...These algorithms will make it easier for the research community and industry to replicate, refine, and identify new ideas, and will create good baselines to build projects on top of. We expect these tools will be used as a base around which new ideas can be added, and as a tool for comparing a new approach against existing ones. We also hope that the simplicity of these tools will allow beginners to experiment with a more advanced toolset, without being buried in implementation details.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Conscious Artificial Intelligence

    Conscious Artificial Intelligence

    It's possible for machines to become self-aware.

    ...This project has 2 subprojects: Object Pascal based CAI NEURAL API - https://github.com/joaopauloschuler/neural-api Python based K-CAI NEURAL API - https://github.com/joaopauloschuler/k-neural-api A video from the first prototype has been made: http://www.youtube.com/watch?v=qH-IQgYy9zg Above video shows a popperian agent collecting mining ore from 3 mining sites and bringing to the base. At the time the agent is born, it doesn't know how to walk nor it knows that it feels pleasure by mining. He has tact only (blind agent). The video shows learning, planning, executing and plan optimization.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 8
    MMAction2

    MMAction2

    OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

    OpenMMLab's next generation video understanding toolbox and benchmark. MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. Modular design: We decompose a video understanding framework into different components. One can easily construct a customized video understanding framework by combining different modules. Support four major video understanding tasks: MMAction2 implements various algorithms for multiple video understanding...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    DeepKE

    DeepKE

    An Open Toolkit for Knowledge Graph Extraction and Construction

    Supporting cnSchema, standard supervised setting, low-resource setting, document-level setting and multi-modal setting for knowledge base population. DeepKE is a knowledge extraction toolkit supporting cnSchema, standard supervised, low-resource, and document-level scenarios for entity, relation, and attribution extraction. It allows developers and researchers to customize datasets and models to extract information from unstructured texts. DeepKE supports low-resource settings with only a few labeled (e.g., 16/32 shot) instances for widespread information extraction tasks. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Rent Manager Software Icon
    Rent Manager Software

    Landlords, multi-family homes, manufactured home communities, single family homes, associations, commercial properties and mixed portfolios.

    Rent Manager is award-winning property management software built for residential, commercial, and short-term-stay portfolios of any size. The program’s fully customizable features include a double-entry accounting system, maintenance management/scheduling, marketing integration, mobile applications, more than 450 insightful reports, and an API that integrates with the best PropTech providers on the market.
    Learn More
  • 10
    U-Net Fusion RFI

    U-Net Fusion RFI

    U-Net for RFI Detection based on @jakeret's implementation

    See original code here: https://github.com/jakeret/tf_unet Currently this project is based on Tensorflow 1.13 code base and there are no plans to transfer to TF version 2. The primary improvements to this code base include a training and evaluation framework, along with a fusion based approach to detection, combining a number of models (currently hard coded to two trained models) along with Sum Threshold as an additional "expert." Additional work is being done to add custom layers to this model for further experimentation, including Squeeze/Excitation layers (unimplemented.) ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Pytorch Points 3D

    Pytorch Points 3D

    Pytorch framework for doing deep learning on point clouds

    ...Task driven implementation with dynamic model and dataset resolution from arguments. Core implementation of common components for point cloud deep learning - greatly simplifying the creation of new models. 4 Base Convolution base classes to simplify the implementation of new convolutions. Each base class supports a different data format.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Stable Baselines

    Stable Baselines

    A fork of OpenAI Baselines, implementations of reinforcement learning

    ...These algorithms will make it easier for the research community and industry to replicate, refine, and identify new ideas, and will create good baselines to build projects on top of. We expect these tools will be used as a base around which new ideas can be added, and as a tool for comparing a new approach against existing ones. We also hope that the simplicity of these tools will allow beginners to experiment with a more advanced toolset, without being buried in implementation details.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    DeepLearn

    DeepLearn

    Implementation of research papers on Deep Learning+ NLP+ CV in Python

    Welcome to DeepLearn. This repository contains an implementation of the following research papers on NLP, CV, ML, and deep learning. The required dependencies are mentioned in requirement.txt. I will also use dl-text modules for preparing the datasets. If you haven't use it, please do have a quick look at it. CV, transfer learning, representation learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14

    ProximityForest

    Efficient Approximate Nearest Neighbors for General Metric Spaces

    A proximity forest is a data structure that allows for efficient computation of approximate nearest neighbors of arbitrary data elements in a metric space. See: O'Hara and Draper, "Are You Using the Right Approximate Nearest Neighbor Algorithm?", WACV 2013 (best student paper award). One application of a ProximityForest is given in the following CVPR publication: Stephen O'Hara and Bruce A. Draper, "Scalable Action Recognition with a Subspace Forest," IEEE Conference on Computer...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15

    PyCBR

    This project aims to provide a simple python interface for CBR

    Case base reasoninig is one of the primitive AI techniques in existance. Infact it's one of the laziest. Implementation however takes some effort. Python is one of the most to used languages that is becoming popular in every community for its simplicity & ease of learning. It has an interface for wordnet (through nltk tools) which brings us why pyCBR exists.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next