Showing 22 open source projects for "algorithms framework"

View related business solutions
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 1
    Ray

    Ray

    A unified framework for scalable computing

    ...Ray makes it effortless to parallelize single machine code — go from a single CPU to multi-core, multi-GPU or multi-node with minimal code changes. Accelerate your PyTorch and Tensorflow workload with a more resource-efficient and flexible distributed execution framework powered by Ray. Accelerate your hyperparameter search workloads with Ray Tune. Find the best model and reduce training costs by using the latest optimization algorithms. Deploy your machine learning models at scale with Ray Serve, a Python-first and framework agnostic model serving framework. Scale reinforcement learning (RL) with RLlib, a framework-agnostic RL library that ships with 30+ cutting-edge RL algorithms including A3C, DQN, and PPO. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    KerasTuner

    KerasTuner

    A Hyperparameter Tuning Library for Keras

    KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily configure your search space with a define-by-run syntax, then leverage one of the available search algorithms to find the best hyperparameter values for your models. KerasTuner comes with Bayesian Optimization, Hyperband, and Random Search algorithms built-in, and is also designed to be easy for researchers to extend in order to experiment with new search algorithms.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    Jittor

    Jittor

    Jittor is a high-performance deep learning framework

    Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators. The whole framework and meta-operators are compiled just in time. A powerful op compiler and tuner are integrated into Jittor. It allowed us to generate high-performance code specialized for your model. Jittor also contains a wealth of high-performance model libraries, including image recognition, detection, segmentation, generation, differentiable rendering, geometric learning, reinforcement...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 4
    Tensorforce

    Tensorforce

    A TensorFlow library for applied reinforcement learning

    Tensorforce is an open-source deep reinforcement learning framework built on TensorFlow, emphasizing modularized design and straightforward usability for applied research and practice.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Connect your teams with an integrated digital workplace Icon
    Connect your teams with an integrated digital workplace

    Wherever your teams work, keep them connected with a digital workplace that unifies all your productivity tools in one central place

    Claromentis provides a reliable and feature-rich business intranet software for modern organizations. Offering collaborative, social, knowledge-sharing, and enterprise-level applications, Claromentis' intranet platform enables businesses to enjoy greater productivity, collaboration, and security. Claromentis' intranet software can be deployed on-premise, in the cloud, or on a company's data center. It can also be customized to meet unique business needs through the addition of modules.
    Free Trial
  • 5
    OpenRLHF

    OpenRLHF

    An Easy-to-use, Scalable and High-performance RLHF Framework

    OpenRLHF is an easy-to-use, scalable, and high-performance framework for Reinforcement Learning with Human Feedback (RLHF). It supports various training techniques and model architectures.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Alibi Detect

    Alibi Detect

    Algorithms for outlier, adversarial and drift detection

    Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline detectors for tabular data, text, images and time series. Both TensorFlow and PyTorch backends are supported for drift detection.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    RecBole

    RecBole

    A unified, comprehensive and efficient recommendation library

    ...We design general and extensible data structures to unify the formatting and usage of various recommendation datasets. We implement more than 100 commonly used recommendation algorithms and provide formatted copies of 28 recommendation datasets. We support a series of widely adopted evaluation protocols or settings for testing and comparing recommendation algorithms. RecBole is developed based on Python and PyTorch for reproducing and developing recommendation algorithms in a unified, comprehensive and efficient framework for research purpose. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    sktime

    sktime

    A unified framework for machine learning with time series

    sktime is a library for time series analysis in Python. It provides a unified interface for multiple time series learning tasks. Currently, this includes time series classification, regression, clustering, annotation, and forecasting. It comes with time series algorithms and scikit-learn compatible tools to build, tune and validate time series models. Our objective is to enhance the interoperability and usability of the time series analysis ecosystem in its entirety. sktime provides a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    TensorFlow

    TensorFlow

    TensorFlow is an open source library for machine learning

    ...TensorFlow expresses its computations as dataflow graphs, with each node in the graph representing an operation. Nodes take tensors—multidimensional arrays—as input and produce tensors as output. The framework allows for these algorithms to be run in C++ for better performance, while the multiple levels of APIs let the user determine how high or low they wish the level of abstraction to be in the models produced. Tensorflow can also be used for research and production with TensorFlow Extended.
    Downloads: 24 This Week
    Last Update:
    See Project
  • Control D: Advanced DNS Filtering for Businesses and Consumers Icon
    Control D: Advanced DNS Filtering for Businesses and Consumers

    Secure, Filter, and Control Your Network

    Control D is a modern and customizable DNS service that blocks threats, unwanted content and ads - on all devices. Onboard in minutes, and forget about it.
    Learn More
  • 10
    AtomAI

    AtomAI

    Deep and Machine Learning for Microscopy

    ...The purpose of the AtomAI is to provide an environment that bridges the instrument-specific libraries and general physical analysis by enabling the seamless deployment of machine learning algorithms including deep convolutional neural networks, invariant variational autoencoders, and decomposition/unmixing techniques for image and hyperspectral data analysis. Ultimately, it aims to combine the power and flexibility of the PyTorch deep learning framework and the simplicity and intuitive nature of packages such as scikit-learn, with a focus on scientific data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    MMAction2

    MMAction2

    OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

    ...MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. Modular design: We decompose a video understanding framework into different components. One can easily construct a customized video understanding framework by combining different modules. Support four major video understanding tasks: MMAction2 implements various algorithms for multiple video understanding tasks, including action recognition, action localization, Spatio-temporal action detection, and skeleton-based action detection. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    SMILI

    SMILI

    Scientific Visualisation Made Easy

    ...The main sMILX application features for viewing n-D images, vector images, DICOMs, anonymizing, shape analysis and models/surfaces with easy drag and drop functions. It also features a number of standard processing algorithms for smoothing, thresholding, masking etc. images and models, both with graphical user interfaces and/or via the command-line. See our YouTube channel for tutorial videos via the homepage. The applications are all built out of a uniform user-interface framework that provides a very high level (Qt) interface to powerful image processing and scientific visualisation algorithms from the Insight Toolkit (ITK) and Visualisation Toolkit (VTK). ...
    Leader badge
    Downloads: 10 This Week
    Last Update:
    See Project
  • 13
    Transformer Reinforcement Learning X

    Transformer Reinforcement Learning X

    A repo for distributed training of language models with Reinforcement

    trlX is a distributed training framework designed from the ground up to focus on fine-tuning large language models with reinforcement learning using either a provided reward function or a reward-labeled dataset. Training support for Hugging Face models is provided by Accelerate-backed trainers, allowing users to fine-tune causal and T5-based language models of up to 20B parameters, such as facebook/opt-6.7b, EleutherAI/gpt-neox-20b, and google/flan-t5-xxl. For models beyond 20B parameters,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    DIG

    DIG

    A library for graph deep learning research

    The key difference with current graph deep learning libraries, such as PyTorch Geometric (PyG) and Deep Graph Library (DGL), is that, while PyG and DGL support basic graph deep learning operations, DIG provides a unified testbed for higher level, research-oriented graph deep learning tasks, such as graph generation, self-supervised learning, explainability, 3D graphs, and graph out-of-distribution. If you are working or plan to work on research in graph deep learning, DIG enables you to develop your own methods within our extensible framework, and compare with current baseline methods using common datasets and evaluation metrics without extra efforts. It includes unified implementations of data interfaces, common algorithms, and evaluation metrics for several advanced tasks. Our goal is to enable researchers to easily implement and benchmark algorithms.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    EasyNLP

    EasyNLP

    EasyNLP: A Comprehensive and Easy-to-use NLP Toolkit

    EasyNLP is an easy-to-use NLP development and application toolkit in PyTorch, first released inside Alibaba in 2021. It is built with scalable distributed training strategies and supports a comprehensive suite of NLP algorithms for various NLP applications. EasyNLP integrates knowledge distillation and few-shot learning for landing large pre-trained models, together with various popular multi-modality pre-trained models. It provides a unified framework of model training, inference, and deployment for real-world applications. It has powered more than 10 BUs and more than 20 business scenarios within the Alibaba group. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Gluon CV Toolkit

    Gluon CV Toolkit

    Gluon CV Toolkit

    ...The model zoo is the one-stop shopping center for many models you are expecting. GluonCV embraces a flexible development pattern while is super easy to optimize and deploy without retaining a heavyweight deep learning framework.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    ChainerRL

    ChainerRL

    ChainerRL is a deep reinforcement learning library

    ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement algorithms in Python using Chainer, a flexible deep learning framework. PFRL is the PyTorch analog of ChainerRL. ChainerRL has a set of accompanying visualization tools in order to aid developers' ability to understand and debug their RL agents. With this visualization tool, the behavior of ChainerRL agents can be easily inspected from a browser UI. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Coach

    Coach

    Enables easy experimentation with state of the art algorithms

    ...It exposes a set of easy-to-use APIs for experimenting with new RL algorithms and allows simple integration of new environments to solve. Coach collects statistics from the training process and supports advanced visualization techniques for debugging the agent being trained. Coach supports many state-of-the-art reinforcement learning algorithms, which are separated into three main classes - value optimization, policy optimization, and imitation learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Intel neon

    Intel neon

    Intel® Nervana™ reference deep learning framework

    neon is Intel's reference deep learning framework committed to best performance on all hardware. Designed for ease of use and extensibility. See the new features in our latest release. We want to highlight that neon v2.0.0+ has been optimized for much better performance on CPUs by enabling Intel Math Kernel Library (MKL). The DNN (Deep Neural Networks) component of MKL that is used by neon is provided free of charge and downloaded automatically as part of the neon installation. The gpu...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    pySPACE

    pySPACE

    Signal Processing and Classification Environment in Python using YAML

    pySPACE is a modular software for processing of large data streams that has been specifically designed to enable distributed execution and empirical evaluation of signal processing chains. Various signal processing algorithms (so called nodes) are available within the software, from finite impulse response filters over data-dependent spatial filters (e.g. CSP, xDAWN) to established classifiers (e.g. SVM, LDA). pySPACE incorporates the concept of node and node chains of the MDP framework. Due to its modular architecture, the software can easily be extended with new processing nodes and more general operations. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    ExoPlanet

    ExoPlanet

    GUI based toolkit for running common Machine Learning algorithms.

    ExoPlanet provides a graphical interface for the construction, evaluation and application of a Machine Learning model in predictive analysis. With the back-end built using the numpy and scikit-learn libraries, as a toolkit, ExoPlanet couples fast and well tested algorithms, a UI designed over the Qt4 framework, and graphs rendered using Matplotlib to provide the user with a rich interface, rapid analytics and interactive visuals. ExoPlanet is designed to have a minimal learning curve, allowing researchers to focus on the applicative aspect of Machine Learning rather than their implementation details. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Monk Computer Vision

    Monk Computer Vision

    A low code unified framework for computer vision and deep learning

    Monk is an open source low code programming environment to reduce the cognitive load faced by entry level programmers while catering to the needs of Expert Deep Learning engineers. There are three libraries in this opensource set. - Monk Classiciation- https://monkai.org. A Unified wrapper over major deep learning frameworks. Our core focus area is at the intersection of Computer Vision and Deep Learning algorithms. - Monk Object Detection -...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next