Showing 525 open source projects for "python q learning"

View related business solutions
  • Create and run cloud-based virtual machines. Icon
    Create and run cloud-based virtual machines.

    Secure and customizable compute service that lets you create and run virtual machines.

    Computing infrastructure in predefined or custom machine sizes to accelerate your cloud transformation. General purpose (E2, N1, N2, N2D) machines provide a good balance of price and performance. Compute optimized (C2) machines offer high-end vCPU performance for compute-intensive workloads. Memory optimized (M2) machines offer the highest memory and are great for in-memory databases. Accelerator optimized (A2) machines are based on the A100 GPU, for very demanding applications.
    Try for free
  • AestheticsPro Medical Spa Software Icon
    AestheticsPro Medical Spa Software

    Our new software release will dramatically improve your medspa business performance while enhancing the customer experience

    AestheticsPro is the most complete Aesthetics Software on the market today. HIPAA Cloud Compliant with electronic charting, integrated POS, targeted marketing and results driven reporting; AestheticsPro delivers the tools you need to manage your medical spa business. It is our mission To Provide an All-in-One Cutting Edge Software to the Aesthetics Industry.
    Learn More
  • 1
    Qlib

    Qlib

    Qlib is an AI-oriented quantitative investment platform

    Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment. With Qlib, you can easily try your ideas to create better Quant investment strategies. An increasing number of SOTA Quant research works/papers are released in Qlib. With Qlib, users can easily try their ideas to create better Quant investment strategies. At the module level, Qlib is a platform that consists of...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Hamilton DAGWorks

    Hamilton DAGWorks

    Helps scientists define testable, modular, self-documenting dataflow

    Hamilton is a lightweight Python library for directed acyclic graphs (DAGs) of data transformations. Your DAG is portable; it runs anywhere Python runs, whether it's a script, notebook, Airflow pipeline, FastAPI server, etc. Your DAG is expressive; Hamilton has extensive features to define and modify the execution of a DAG (e.g., data validation, experiment tracking, remote execution). To create a DAG, write regular Python functions that specify their dependencies with their parameters. As...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    PyTensor

    PyTensor

    Python library for defining and optimizing mathematical expressions

    PyTensor is a fork of Aesara, a Python library for defining, optimizing, and efficiently evaluating mathematical expressions involving multi-dimensional arrays. PyTensor is based on Theano, which has been powering large-scale computationally intensive scientific investigations since 2007. A hackable, pure-Python codebase. Extensible graph framework is suitable for rapid development of custom operators and symbolic optimizations. Implements an extensible graph transpilation framework that...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    TFX

    TFX

    TFX is an end-to-end platform for deploying production ML pipelines

    TensorFlow Extended (TFX) is a Google-production-scale machine learning platform based on TensorFlow. It provides a configuration framework to express ML pipelines consisting of TFX components. TFX pipelines can be orchestrated using Apache Airflow and Kubeflow Pipelines. Both the components themselves and the integrations with orchestration systems can be extended. TFX components interact with an ML Metadata backend that keeps a record of component runs, input and output artifacts, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place. Icon
    Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place.

    For healthcare Providers and Facilities

    Incredable streamlines and simplifies the complex process of medical credentialing for hospitals and medical facilities, helping you save valuable time, reduce costs, and minimize risks. With Incredable, you can effortlessly manage all your healthcare providers and their credentials within a single, unified platform. Our state-of-the-art technology ensures top-notch data security, giving you peace of mind.
    Learn More
  • 5
    Transformer Engine

    Transformer Engine

    A library for accelerating Transformer models on NVIDIA GPUs

    Transformer Engine (TE) is a library for accelerating Transformer models on NVIDIA GPUs, including using 8-bit floating point (FP8) precision on Hopper GPUs, to provide better performance with lower memory utilization in both training and inference. TE provides a collection of highly optimized building blocks for popular Transformer architectures and an automatic mixed precision-like API that can be used seamlessly with your framework-specific code. TE also includes a framework-agnostic C++...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    FiftyOne

    FiftyOne

    The open-source tool for building high-quality datasets

    The open-source tool for building high-quality datasets and computer vision models. Nothing hinders the success of machine learning systems more than poor-quality data. And without the right tools, improving a model can be time-consuming and inefficient. FiftyOne supercharges your machine learning workflows by enabling you to visualize datasets and interpret models faster and more effectively. Improving data quality and understanding your model’s failure modes are the most impactful ways to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    APKiD

    APKiD

    Android Application Identifier for Packers, Protectors and Obfuscators

    APKiD gives you information about how an APK was made. It identifies many compilers, packers, obfuscators, and other weird stuff. It's PEiD for Android.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    torchtext

    torchtext

    Data loaders and abstractions for text and NLP

    We recommend Anaconda as a Python package management system. Please refer to pytorch.org for the details of PyTorch installation. LTS versions are distributed through a different channel than the other versioned releases. Alternatively, you might want to use the Moses tokenizer port in SacreMoses (split from NLTK). You have to install SacreMoses. To build torchtext from source, you need git, CMake and C++11 compiler such as g++. When building from source, make sure that you have the same C++...
    Downloads: 10 This Week
    Last Update:
    See Project
  • 9
    Haiku

    Haiku

    JAX-based neural network library

    ...It preserves Sonnet’s module-based programming model for state management while retaining access to JAX’s function transformations. Haiku can be expected to compose with other libraries and work well with the rest of JAX. Similar to Sonnet modules, Haiku modules are Python objects that hold references to their own parameters, other modules, and methods that apply functions on user inputs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Award-Winning Medical Office Software Designed for Your Specialty Icon
    Award-Winning Medical Office Software Designed for Your Specialty

    Succeed and scale your practice with cloud-based, data-backed, AI-powered healthcare software.

    RXNT is an ambulatory healthcare technology pioneer that empowers medical practices and healthcare organizations to succeed and scale through innovative, data-backed, AI-powered software.
    Learn More
  • 10
    gensim

    gensim

    Topic Modelling for Humans

    Gensim is a Python library for topic modeling, document indexing, and similarity retrieval with large corpora. The target audience is the natural language processing (NLP) and information retrieval (IR) community.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    TorchAudio

    TorchAudio

    Data manipulation and transformation for audio signal processing

    The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the same philosophy of providing strong GPU acceleration, having a focus on trainable features through the autograd system, and having consistent style (tensor names and dimension names). Therefore, it is primarily a machine learning library and not a general signal processing library. The benefits of PyTorch can be seen in torchaudio through having all the computations be through PyTorch...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    SageMaker Training Toolkit

    SageMaker Training Toolkit

    Train machine learning models within Docker containers

    Train machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code. A container provides an effectively isolated environment, ensuring a consistent runtime and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Shapash

    Shapash

    Explainability and Interpretability to Develop Reliable ML models

    Shapash is a Python library dedicated to the interpretability of Data Science models. It provides several types of visualization that display explicit labels that everyone can understand. Data Scientists can more easily understand their models, share their results and easily document their projects in an HTML report. End users can understand the suggestion proposed by a model using a summary of the most influential criteria.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Hummingbird

    Hummingbird

    Hummingbird compiles trained ML models into tensor computation

    Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to seamlessly leverage neural network frameworks (such as PyTorch) to accelerate traditional ML models. Thanks to Hummingbird, users can benefit from (1) all the current and future optimizations implemented in neural network frameworks; (2) native hardware acceleration; (3) having a unique platform to support both traditional and neural network models; and having all of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    supervision

    supervision

    We write your reusable computer vision tools

    We write your reusable computer vision tools. Whether you need to load your dataset from your hard drive, draw detections on an image or video, or count how many detections are in a zone. You can count on us.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Fairlearn

    Fairlearn

    A Python package to assess and improve fairness of ML models

    Fairlearn is a Python package that empowers developers of artificial intelligence (AI) systems to assess their system's fairness and mitigate any observed unfairness issues. Fairlearn contains mitigation algorithms as well as metrics for model assessment. Besides the source code, this repository also contains Jupyter notebooks with examples of Fairlearn usage. An AI system can behave unfairly for a variety of reasons. In Fairlearn, we define whether an AI system is behaving unfairly in terms...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Materials Discovery: GNoME

    Materials Discovery: GNoME

    AI discovers 520000 stable inorganic crystal structures for research

    Materials Discovery (GNoME) is a large-scale research initiative by Google DeepMind focused on applying graph neural networks to accelerate the discovery of stable inorganic crystal materials. The project centers on Graph Networks for Materials Exploration (GNoME), a message-passing neural network architecture trained on density functional theory (DFT) data to predict material stability and energy formation. Using GNoME, DeepMind identified 381,000 new stable materials, later expanding the...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 18
    Autodistill

    Autodistill

    Images to inference with no labeling

    Autodistill uses big, slower foundation models to train small, faster supervised models. Using autodistill, you can go from unlabeled images to inference on a custom model running at the edge with no human intervention in between. You can use Autodistill on your own hardware, or use the Roboflow hosted version of Autodistill to label images in the cloud.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    PML

    PML

    The easiest way to use deep metric learning in your application

    This library contains 9 modules, each of which can be used independently within your existing codebase, or combined together for a complete train/test workflow. To compute the loss in your training loop, pass in the embeddings computed by your model, and the corresponding labels. The embeddings should have size (N, embedding_size), and the labels should have size (N), where N is the batch size. The TripletMarginLoss computes all possible triplets within the batch, based on the labels you...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Lepton AI

    Lepton AI

    A Pythonic framework to simplify AI service building

    A Pythonic framework to simplify AI service building. Cutting-edge AI inference and training, unmatched cloud-native experience, and top-tier GPU infrastructure. Ensure 99.9% uptime with comprehensive health checks and automatic repairs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    MLPerf

    MLPerf

    Reference implementations of MLPerf™ training benchmarks

    This is a repository of reference implementations for the MLPerf training benchmarks. These implementations are valid as starting points for benchmark implementations but are not fully optimized and are not intended to be used for "real" performance measurements of software frameworks or hardware. Benchmarking the performance of training ML models on a wide variety of use cases, software, and hardware drives AI performance across the tech industry. The MLPerf Training working group draws on...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    Chronos Forecasting

    Chronos Forecasting

    Pretrained (Language) Models for Probabilistic Time Series Forecasting

    Chronos is a family of pretrained time series forecasting models based on language model architectures. A time series is transformed into a sequence of tokens via scaling and quantization, and a language model is trained on these tokens using the cross-entropy loss. Once trained, probabilistic forecasts are obtained by sampling multiple future trajectories given the historical context. Chronos models have been trained on a large corpus of publicly available time series data, as well as...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    HDBSCAN

    HDBSCAN

    A high performance implementation of HDBSCAN clustering

    HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates the result to find a clustering that gives the best stability over epsilon. This allows HDBSCAN to find clusters of varying densities (unlike DBSCAN), and be more robust to parameter selection. In practice this means that HDBSCAN returns a good clustering straight away with little or no parameter tuning -- and the primary parameter, minimum cluster...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    talos

    talos

    Hyperparameter Optimization for TensorFlow, Keras and PyTorch

    Talos radically changes the ordinary Keras, TensorFlow (tf.keras), and PyTorch workflow by fully automating hyperparameter tuning and model evaluation. Talos exposes Keras and TensorFlow (tf.keras) and PyTorch functionality entirely and there is no new syntax or templates to learn. Talos is made for data scientists and data engineers that want to remain in complete control of their TensorFlow (tf.keras) and PyTorch models, but are tired of mindless parameter hopping and confusing...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Jina

    Jina

    Build cross-modal and multimodal applications on the cloud

    Jina is a framework that empowers anyone to build cross-modal and multi-modal applications on the cloud. It uplifts a PoC into a production-ready service. Jina handles the infrastructure complexity, making advanced solution engineering and cloud-native technologies accessible to every developer. Build applications that deliver fresh insights from multiple data types such as text, image, audio, video, 3D mesh, PDF with Jina AI’s DocArray. Polyglot gateway that supports gRPC, Websockets, HTTP,...
    Downloads: 0 This Week
    Last Update:
    See Project