Showing 173 open source projects for "code::block"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 1
    PyTorch Book

    PyTorch Book

    PyTorch tutorials and fun projects including neural talk

    This is the corresponding code for the book "The Deep Learning Framework PyTorch: Getting Started and Practical", but it can also be used as a standalone PyTorch Getting Started Guide and Tutorial. The current version of the code is based on pytorch 1.0.1, if you want to use an older version please git checkout v0.4or git checkout v0.3. Legacy code has better python2/python3 compatibility, CPU/GPU compatibility test.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Image classification models for Keras

    Image classification models for Keras

    Keras code and weights files for popular deep learning models

    ...Pre-trained weights can be automatically loaded upon instantiation (weights='imagenet' argument in model constructor for all image models, weights='msd' for the music tagging model). Weights are automatically downloaded if necessary, and cached locally in ~/.keras/models/. This repository contains code for the following Keras models, VGG16, VGG19, ResNet50, Inception v3, and CRNN for music tagging.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Intel neon

    Intel neon

    Intel® Nervana™ reference deep learning framework

    neon is Intel's reference deep learning framework committed to best performance on all hardware. Designed for ease of use and extensibility. See the new features in our latest release. We want to highlight that neon v2.0.0+ has been optimized for much better performance on CPUs by enabling Intel Math Kernel Library (MKL). The DNN (Deep Neural Networks) component of MKL that is used by neon is provided free of charge and downloaded automatically as part of the neon installation. The gpu...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Tangent

    Tangent

    Source-to-source debuggable derivatives in pure Python

    Existing libraries implement automatic differentiation by tracing a program's execution (at runtime, like PyTorch) or by staging out a dynamic data-flow graph and then differentiating the graph (ahead-of-time, like TensorFlow). In contrast, Tangent performs ahead-of-time autodiff on the Python source code itself, and produces Python source code as its output. Tangent fills a unique location in the space of machine learning tools. As a result, you can finally read your automatic derivative code just like the rest of your program. Tangent is useful to researchers and students who not only want to write their models in Python, but also read and debug automatically-generated derivative code without sacrificing speed and flexibility. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • 5
    Five video classification methods

    Five video classification methods

    Code that accompanies my blog post outlining five video classification

    Classifying video presents unique challenges for machine learning models. As I’ve covered in my previous posts, video has the added (and interesting) property of temporal features in addition to the spatial features present in 2D images. While this additional information provides us more to work with, it also requires different network architectures and, often, adds larger memory and computational demands.We won’t use any optical flow images. This reduces model complexity, training time, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    auto_ml

    auto_ml

    Automated machine learning for analytics & production

    ...Here's an example that includes serializing and loading the trained model, then getting predictions on single dictionaries, roughly the process you'd likely follow to deploy the trained model. Before you go any further, try running the code. Load up some data (either a DataFrame, or a list of dictionaries, where each dictionary is a row of data). Make a column_descriptions dictionary that tells us which attribute name in each row represents the value we’re trying to predict. Pass all that into auto_ml, and see what happens! You can pass in your own function to perform feature engineering on the data. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7

    Chronological Cohesive Units

    The experimental source code for the paper

    The experimental source code for the paper, "A Novel Recommendation Approach Based on Chronological Cohesive Units in Content Consuming"
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Lip Reading

    Lip Reading

    Cross Audio-Visual Recognition using 3D Architectures

    The input pipeline must be prepared by the users. This code is aimed to provide the implementation for Coupled 3D Convolutional Neural Networks for audio-visual matching. Lip-reading can be a specific application for this work. Audio-visual recognition (AVR) has been considered as a solution for speech recognition tasks when the audio is corrupted, as well as a visual recognition method used for speaker verification in multi-speaker scenarios.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 9
    Machine Learning for OpenCV

    Machine Learning for OpenCV

    M. Beyeler (2017). Machine Learning for OpenCV

    M. Beyeler (2017). Machine Learning for OpenCV: Intelligent image processing with Python. Packt Publishing Ltd., ISBN 978-178398028-4.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 10

    TEES

    Turku Event Extraction System

    Turku Event Extraction System (TEES) is a free and open source natural language processing system developed for the extraction of events and relations from biomedical text. It is written mostly in Python, and should work in generic Unix/Linux environments. Currently, the TEES source code repository still remains on GitHub at http://jbjorne.github.com/TEES/ where there is also a wiki with more information.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Convolution arithmetic

    Convolution arithmetic

    A technical report on convolution arithmetic in deep learning

    A technical report on convolution arithmetic in the context of deep learning. The code and the images of this tutorial are free to use as regulated by the licence and subject to proper attribution. The animations will be output to the gif directory. Individual animation steps will be output in PDF format to the pdf directory and in PNG format to the png directory. We introduce a guide to help deep learning practitioners understand and manipulate convolutional neural network architectures. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12

    HYBRYD

    Library written in C with Python API for IPv6 networking

    ...I'm trying to readapt it for Python 2.7.3 and GCC 4.6.3 The library has to be build as a simple Python extension using >python setup.py install and allows to create different kind of servers, clients or hybryds (clients-servers) over (TCP/UDP) using the Ipv6 Protocol. The architecture of the code is based on brain architecture. Will put an IPv6 adress active available as soon as possible so that you can download pieces of codes. The aim of that coding was to use primary linux commands easily codable and make an object of an IPv6 connection. Moreover, the model is full-state!
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13

    LWPR

    Locally Weighted Projection Regression (LWPR)

    ... [2] Stefan Klanke, Sethu Vijayakumar and Stefan Schaal, A Library for Locally Weighted Projection Regression, Journal of Machine Learning Research (JMLR), vol. 9, pp. 623--626 (2008). More details and usage guidelines on the code website.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14

    mullpy

    Multilabel-learning library built on python

    Mullpy is a machine-learning library that mainly aim to solve multi-label problems. It is classifier independent, has many ensemble capabilities (diversity methods like bagging, random subspaces, etc.) and automated results presentation (Excel, images as ROC or class-separated info, etc.). It is fully configurable. At the moment supports Neural Networks and classifiers defined in files. It is working on python3.3.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15

    EducationalLCS

    eLCS - Educational Learning Classifier System

    ...Each eLCS implementations (from demo 2 up to demo 6) progressively add major components of the entire LCS algorithm in order to illustrate how work, how they are coded, and what impact they have on how an LCS algorithm runs. The Demo 6 version of eLCS is most similar to the UCS algorithm. Each version only includes the minimum code needed to perform the functions they were designed for. This way users can start by examining the simplest version of the code and progress forward. This code is intended to be used as an educational tool, or as algorithmic code building blocks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16

    ProximityForest

    Efficient Approximate Nearest Neighbors for General Metric Spaces

    ...One application of a ProximityForest is given in the following CVPR publication: Stephen O'Hara and Bruce A. Draper, "Scalable Action Recognition with a Subspace Forest," IEEE Conference on Computer Vision and Pattern Recognition, 2012. This source code is provided without warranty and is available under the GPL license. More commercially-friendly licenses may be available. Please contact Stephen O'Hara for license options. Please view the wiki on this site for installation instructions and examples on reproducing the results of the papers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    pyIRDG

    pyIRDG

    IMDb Relational Dataset Generator

    pyIRDG is a program written in Python to generate relational datasets in Prolog format. It uses data from the Internet Movie Database in combination with IMDbPY as backend. A graphical user interface written in pyQt allows the user to link multiple entities together as model for the generation process. The big four entities are Title, Person, Company and Character. Many attributes can be chosen for adding to the output .pl file. Three types of constraints on attributes are available to limit...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    mlpy

    mlpy

    Machine Learning Python

    mlpy is a Python module for Machine Learning built on top of NumPy/SciPy and of GSL. mlpy provides high-level functions and classes allowing, with few lines of code, the design of rich workflows for classification, regression, clustering and feature selection. mlpy is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License version 3. mlpy is available both for Python >=2.6 and Python 3.X.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    PyPR - Python Pattern Recognition. A small collection of useful pattern recognition methods. The code is still in its early stages.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    BCI Project Triathlon
    A three-step approach towards experimental brain-computer-interfaces, based on the OCZ nia device for EEG-data acquisition and artificial neural networks for signal-interpretation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Brainiac, Is C/C++ Libraries, Programs, And Python, And Lua Scripts For Neural Networking And Genetic Programming, In An Attempt To Create A "Glue-It-All-Together" Project, Striving Towards General Artificial Intelligence
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Monk Computer Vision

    Monk Computer Vision

    A low code unified framework for computer vision and deep learning

    ... - Monk Object Detection - https://github.com/Tessellate-Imaging/Monk_Object_Detection. Monk object detection is our take on assembling state of the art object detection, image segmentation, pose estimation algorithms at one place, making them low code and easily configurable on any machine. - Monk GUI - https://github.com/Tessellate-Imaging/Monk_Gui. An interface over these low code tools for non coders.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23

    text_summurization_abstractive_methods

    Multiple implementations for abstractive text summurization

    This repo is built to collect multiple implementations for abstractive approaches to address text summarization it is built to simply run on google colab , in one notebook so you would only need an internet connection to run these examples without the need to have a powerful machine , so all the code examples would be in a jupyter format , and you don't have to download data to your device as we connect these jupyter notebooks to google drive
    Downloads: 0 This Week
    Last Update:
    See Project