Showing 529 open source projects for "python-libpcap"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    Haiku Sonnet for JAX

    Haiku Sonnet for JAX

    JAX-based neural network library

    ...Haiku is a simple neural network library for JAX that enables users to use familiar object-oriented programming models while allowing full access to JAX's pure function transformations. Haiku provides two core tools: a module abstraction, hk.Module, and a simple function transformation, hk.transform. hk.Modules are Python objects that hold references to their own parameters, other modules, and methods that apply functions on user inputs. hk.transform turns functions that use these object-oriented, functionally "impure" modules into pure functions that can be used with jax.jit, jax.grad, jax.pmap, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    pomegranate

    pomegranate

    Fast, flexible and easy to use probabilistic modelling in Python

    pomegranate is a library for probabilistic modeling defined by its modular implementation and treatment of all models as the probability distributions they are. The modular implementation allows one to easily drop normal distributions into a mixture model to create a Gaussian mixture model just as easily as dropping a gamma and a Poisson distribution into a mixture model to create a heterogeneous mixture. But that's not all! Because each model is treated as a probability distribution,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Datasets

    Datasets

    Hub of ready-to-use datasets for ML models

    Datasets is a library for easily accessing and sharing datasets, and evaluation metrics for Natural Language Processing (NLP), computer vision, and audio tasks. Load a dataset in a single line of code, and use our powerful data processing methods to quickly get your dataset ready for training in a deep learning model. Backed by the Apache Arrow format, process large datasets with zero-copy reads without any memory constraints for optimal speed and efficiency. We also feature a deep...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 4
    Pandas Profiling

    Pandas Profiling

    Create HTML profiling reports from pandas DataFrame objects

    pandas-profiling generates profile reports from a pandas DataFrame. The pandas df.describe() function is handy yet a little basic for exploratory data analysis. pandas-profiling extends pandas DataFrame with df.profile_report(), which automatically generates a standardized univariate and multivariate report for data understanding. High correlation warnings, based on different correlation metrics (Spearman, Pearson, Kendall, Cramér’s V, Phik). Most common categories (uppercase, lowercase,...
    Downloads: 4 This Week
    Last Update:
    See Project
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 5
    Jittor

    Jittor

    Jittor is a high-performance deep learning framework

    ...Jittor also contains a wealth of high-performance model libraries, including image recognition, detection, segmentation, generation, differentiable rendering, geometric learning, reinforcement learning, etc. The front-end language is Python. Module Design and Dynamic Graph Execution is used in the front-end, which is the most popular design for deep learning framework interface. The back-end is implemented by high-performance languages, such as CUDA, C++. Jittor'op is similar to NumPy. Let's try some operations. We create Var a and b via operation jt.float32, and add them. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    ZenML

    ZenML

    Build portable, production-ready MLOps pipelines

    A simple yet powerful open-source framework that scales your MLOps stack with your needs. Set up ZenML in a matter of minutes, and start with all the tools you already use. Gradually scale up your MLOps stack by switching out components whenever your training or deployment requirements change. Keep up with the latest changes in the MLOps world and easily integrate any new developments. Define simple and clear ML workflows without wasting time on boilerplate tooling or infrastructure code....
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    Raster Vision

    Raster Vision

    Open source framework for deep learning satellite and aerial imagery

    Raster Vision is an open source framework for Python developers building computer vision models on satellite, aerial, and other large imagery sets (including oblique drone imagery). There is built-in support for chip classification, object detection, and semantic segmentation using PyTorch. Raster Vision allows engineers to quickly and repeatably configure pipelines that go through core components of a machine learning workflow: analyzing training data, creating training chips, training models, creating predictions, evaluating models, and bundling the model files and configuration for easy deployment. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    TorchAudio

    TorchAudio

    Data manipulation and transformation for audio signal processing

    The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the same philosophy of providing strong GPU acceleration, having a focus on trainable features through the autograd system, and having consistent style (tensor names and dimension names). Therefore, it is primarily a machine learning library and not a general signal processing library. The benefits of PyTorch can be seen in torchaudio through having all the computations be through PyTorch...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    higgsfield

    higgsfield

    Fault-tolerant, highly scalable GPU orchestration

    Higgsfield is an open-source, fault-tolerant, highly scalable GPU orchestration, and a machine learning framework designed for training models with billions to trillions of parameters, such as Large Language Models (LLMs).
    Downloads: 1 This Week
    Last Update:
    See Project
  • Reach Your Audience with Rise Vision, the #1 Cloud Digital Signage Software Solution Icon
    Reach Your Audience with Rise Vision, the #1 Cloud Digital Signage Software Solution

    K-12 Schools, Higher Education, Businesses, Restaurants

    Rise Vision is the #1 digital signage company, offering easy-to-use cloud digital signage software compatible with any player across multiple screens. Forget about static displays. Save time and boost sales with 500+ customizable content templates for your screens. If you ever need help, get free training and exceptionally fast support.
    Learn More
  • 10
    UMAP

    UMAP

    Uniform Manifold Approximation and Projection

    Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that can be used for visualization similarly to t-SNE, but also for general non-linear dimension reduction. It is possible to model the manifold with a fuzzy topological structure. The embedding is found by searching for a low-dimensional projection of the data that has the closest possible equivalent fuzzy topological structure. First of all UMAP is fast. It can handle large datasets and high dimensional...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    PyTorch Forecasting

    PyTorch Forecasting

    Time series forecasting with PyTorch

    PyTorch Forecasting aims to ease state-of-the-art time series forecasting with neural networks for both real-world cases and research alike. The goal is to provide a high-level API with maximum flexibility for professionals and reasonable defaults for beginners. A time series dataset class that abstracts handling variable transformations, missing values, randomized subsampling, multiple history lengths, etc. A base model class that provides basic training of time series models along with...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    Core ML Tools

    Core ML Tools

    Core ML tools contain supporting tools for Core ML model conversion

    Use Core ML Tools (coremltools) to convert machine learning models from third-party libraries to the Core ML format. This Python package contains the supporting tools for converting models from training libraries. Core ML is an Apple framework to integrate machine learning models into your app. Core ML provides a unified representation for all models. Your app uses Core ML APIs and user data to make predictions, and to fine-tune models, all on the user’s device.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Llama Recipes

    Llama Recipes

    Scripts for fine-tuning Meta Llama3 with composable FSDP & PEFT method

    The 'llama-recipes' repository is a companion to the Meta Llama models. We support the latest version, Llama 3.1, in this repository. The goal is to provide a scalable library for fine-tuning Meta Llama models, along with some example scripts and notebooks to quickly get started with using the models in a variety of use-cases, including fine-tuning for domain adaptation and building LLM-based applications with Llama and other tools in the LLM ecosystem. The examples here showcase how to run...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    AutoMLOps

    AutoMLOps

    Build MLOps Pipelines in Minutes

    AutoMLOps is a service that generates, provisions, and deploys CI/CD integrated MLOps pipelines, bridging the gap between Data Science and DevOps. AutoMLOps provides a repeatable process that dramatically reduces the time required to build MLOps pipelines. The service generates a containerized MLOps codebase, provides infrastructure-as-code to provision and maintain the underlying MLOps infra, and provides deployment functionalities to trigger and run MLOps pipelines. AutoMLOps gives...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    AtomAI

    AtomAI

    Deep and Machine Learning for Microscopy

    AtomAI is a Pytorch-based package for deep and machine-learning analysis of microscopy data that doesn't require any advanced knowledge of Python or machine learning. The intended audience is domain scientists with a basic understanding of how to use NumPy and Matplotlib. It was developed by Maxim Ziatdinov at Oak Ridge National Lab. The purpose of the AtomAI is to provide an environment that bridges the instrument-specific libraries and general physical analysis by enabling the seamless deployment of machine learning algorithms including deep convolutional neural networks, invariant variational autoencoders, and decomposition/unmixing techniques for image and hyperspectral data analysis. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    pmdarima

    pmdarima

    Statistical library designed to fill the void in Python's time series

    A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Awesome Fraud Detection Research Papers

    Awesome Fraud Detection Research Papers

    A curated list of data mining papers about fraud detection

    A curated list of data mining papers about fraud detection from several conferences.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Optax

    Optax

    Optax is a gradient processing and optimization library for JAX

    Optax is a gradient processing and optimization library for JAX. It is designed to facilitate research by providing building blocks that can be recombined in custom ways in order to optimize parametric models such as, but not limited to, deep neural networks. We favor focusing on small composable building blocks that can be effectively combined into custom solutions. Others may build upon these basic components in more complicated abstractions. Whenever reasonable, implementations prioritize...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    x-transformers

    x-transformers

    A simple but complete full-attention transformer

    A simple but complete full-attention transformer with a set of promising experimental features from various papers. Proposes adding learned memory key/values prior to attending. They were able to remove feedforwards altogether and attain a similar performance to the original transformers. I have found that keeping the feedforwards and adding the memory key/values leads to even better performance. Proposes adding learned tokens, akin to CLS tokens, named memory tokens, that is passed through...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    Transformer Engine

    Transformer Engine

    A library for accelerating Transformer models on NVIDIA GPUs

    Transformer Engine (TE) is a library for accelerating Transformer models on NVIDIA GPUs, including using 8-bit floating point (FP8) precision on Hopper GPUs, to provide better performance with lower memory utilization in both training and inference. TE provides a collection of highly optimized building blocks for popular Transformer architectures and an automatic mixed precision-like API that can be used seamlessly with your framework-specific code. TE also includes a framework-agnostic C++...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    Autodistill

    Autodistill

    Images to inference with no labeling

    Autodistill uses big, slower foundation models to train small, faster supervised models. Using autodistill, you can go from unlabeled images to inference on a custom model running at the edge with no human intervention in between. You can use Autodistill on your own hardware, or use the Roboflow hosted version of Autodistill to label images in the cloud.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    AIF360

    AIF360

    A comprehensive set of fairness metrics for datasets

    ...The AI Fairness 360 toolkit is an extensible open-source library containing techniques developed by the research community to help detect and mitigate bias in machine learning models throughout the AI application lifecycle. AI Fairness 360 package is available in both Python and R. The AI Fairness 360 interactive experience provides a gentle introduction to the concepts and capabilities. The tutorials and other notebooks offer a deeper, data scientist-oriented introduction. The complete API is also available. Being a comprehensive set of capabilities, it may be confusing to figure out which metrics and algorithms are most appropriate for a given use case. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    torchtext

    torchtext

    Data loaders and abstractions for text and NLP

    We recommend Anaconda as a Python package management system. Please refer to pytorch.org for the details of PyTorch installation. LTS versions are distributed through a different channel than the other versioned releases. Alternatively, you might want to use the Moses tokenizer port in SacreMoses (split from NLTK). You have to install SacreMoses. To build torchtext from source, you need git, CMake and C++11 compiler such as g++.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    ClearML

    ClearML

    Streamline your ML workflow

    ...It is designed as an end-to-end MLOps suite allowing you to focus on developing your ML code & automation, while ClearML ensures your work is reproducible and scalable. The ClearML Python Package for integrating ClearML into your existing scripts by adding just two lines of code, and optionally extending your experiments and other workflows with ClearML powerful and versatile set of classes and methods. The ClearML Server storing experiment, model, and workflow data, and supports the Web UI experiment manager, and ML-Ops automation for reproducibility and tuning. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    TensorFlow Probability

    TensorFlow Probability

    Probabilistic reasoning and statistical analysis in TensorFlow

    TensorFlow Probability is a library for probabilistic reasoning and statistical analysis. TensorFlow Probability (TFP) is a Python library built on TensorFlow that makes it easy to combine probabilistic models and deep learning on modern hardware (TPU, GPU). It's for data scientists, statisticians, ML researchers, and practitioners who want to encode domain knowledge to understand data and make predictions. Since TFP inherits the benefits of TensorFlow, you can build, fit, and deploy a model using a single language throughout the lifecycle of model exploration and production. ...
    Downloads: 0 This Week
    Last Update:
    See Project