Showing 167 open source projects for "no code"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    Trax

    Trax

    Deep learning with clear code and speed

    Trax is an end-to-end library for deep learning that focuses on clear code and speed. It is actively used and maintained in the Google Brain team. Run a pre-trained Transformer, create a translator in a few lines of code. Features and resources, API docs, where to talk to us, how to open an issue and more. Walkthrough, how Trax works, how to make new models and train on your own data. Trax includes basic models (like ResNet, LSTM, Transformer) and RL algorithms (like REINFORCE, A2C, PPO). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Tez

    Tez

    Tez is a super-simple and lightweight Trainer for PyTorch

    Tez is a super-simple and lightweight Trainer for PyTorch. It also comes with many utils that you can use to tackle over 90% of deep learning projects in PyTorch. tez (तेज़ / تیز) means sharp, fast & active. This is a simple, to-the-point, library to make your PyTorch training easy. This library is in early-stage currently! So, there might be breaking changes. Currently, tez supports cpu, single gpu and multi-gpu & tpu training. More coming soon! Using tez is super-easy. We don't want you to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    CleverHans

    CleverHans

    An adversarial example library for constructing attacks

    This repository contains the source code for CleverHans, a Python library to benchmark machine learning systems' vulnerability to adversarial examples. You can learn more about such vulnerabilities on the accompanying blog. The CleverHans library is under continual development, always welcoming contributions of the latest attacks and defenses. In particular, we always welcome help with resolving the issues currently open.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    U-Net Fusion RFI

    U-Net Fusion RFI

    U-Net for RFI Detection based on @jakeret's implementation

    See original code here: https://github.com/jakeret/tf_unet Currently this project is based on Tensorflow 1.13 code base and there are no plans to transfer to TF version 2. The primary improvements to this code base include a training and evaluation framework, along with a fusion based approach to detection, combining a number of models (currently hard coded to two trained models) along with Sum Threshold as an additional "expert."
    Downloads: 0 This Week
    Last Update:
    See Project
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 5
    ML workspace

    ML workspace

    All-in-one web-based IDE specialized for machine learning

    ...This workspace is the ultimate tool for developers preloaded with a variety of popular data science libraries (e.g., Tensorflow, PyTorch, Keras, Sklearn) and dev tools (e.g., Jupyter, VS Code, Tensorboard) perfectly configured, optimized, and integrated. Usable as remote kernel (Jupyter) or remote machine (VS Code) via SSH. Easy to deploy on Mac, Linux, and Windows via Docker. Jupyter, JupyterLab, and Visual Studio Code web-based IDEs.By default, the workspace container has no resource constraints and can use as much of a given resource as the host’s kernel scheduler allows.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Machine-Learning

    Machine-Learning

    kNN, decision tree, Bayesian, logistic regression, SVM

    Machine-Learning is a repository focused on practical machine learning implementations in Python, covering classic algorithms like k-Nearest Neighbors, decision trees, naive Bayes, logistic regression, support vector machines, linear and tree-based regressions, and likely corresponding code examples and documentation. It targets learners or practitioners who want to understand and implement ML algorithms from scratch or via standard libraries, gaining hands-on experience rather than relying solely on black-box frameworks. This makes the repo suitable for students, hobbyists, or developers who want to deeply understand how ML algorithms work under the hood and experiment with parameter tuning or custom data. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Kashgari

    Kashgari

    Kashgari is a production-level NLP Transfer learning framework

    Kashgari is a simple and powerful NLP Transfer learning framework, build a state-of-art model in 5 minutes for named entity recognition (NER), part-of-speech tagging (PoS), and text classification tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Machine Learning Collection

    Machine Learning Collection

    A resource for learning about Machine learning & Deep Learning

    A resource for learning about Machine learning & Deep Learning. In this repository, you will find tutorials and projects related to Machine Learning. I try to make the code as clear as possible, and the goal is be to used as a learning resource and a way to look up problems to solve specific problems. For most, I have also done video explanations on YouTube if you want a walkthrough for the code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    SRU

    SRU

    Training RNNs as Fast as CNNs

    ...SRU achieves 5--9x speed-up over cuDNN-optimized LSTM on classification and question answering datasets, and delivers stronger results than LSTM and convolutional models. We also obtain an average of 0.7 BLEU improvement over the Transformer model on the translation by incorporating SRU into the architecture. The experimental code and SRU++ implementation are available on the dev branch which will be merged into master later.
    Downloads: 0 This Week
    Last Update:
    See Project
  • G-P - Global EOR Solution Icon
    G-P - Global EOR Solution

    Companies searching for an Employer of Record solution to mitigate risk and manage compliance, taxes, benefits, and payroll anywhere in the world

    With G-P's industry-leading Employer of Record (EOR) and Contractor solutions, you can hire, onboard and manage teams in 180+ countries — quickly and compliantly — without setting up entities.
    Learn More
  • 10
    Opyrator

    Opyrator

    Turns your machine learning code into microservices with web API

    ...Opyrator builds on open standards - OpenAPI, JSON Schema, and Python type hints - and is powered by FastAPI, Streamlit, and Pydantic. It cuts out all the pain for productizing and sharing your Python code - or anything you can wrap into a single Python function. An Opyrator-compatible function is required to have an input parameter and return value based on Pydantic models. The input and output models are specified via type hints. You can launch a graphical user interface - powered by Streamlit - for your compatible function. The UI is auto-generated from the input- and output-schema of the given function.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Couler

    Couler

    Unified Interface for Constructing and Managing Workflows

    Couler is a system designed for unified machine learning workflow optimization in the cloud. Couler endeavors to provide a unified interface for constructing and optimizing workflows across various workflow engines, such as Argo Workflows, Tekton Pipelines, and Apache Airflow. Couler enhances workflow efficiency through features like Autonomous Workflow Construction, Automatic Artifact Caching Mechanisms, Big Workflow Auto Parallelism Optimization, and Automatic Hyperparameters Tuning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    MLOps Course

    MLOps Course

    Learn how to design, develop, deploy and iterate on ML apps

    ...It is structured around the full lifecycle: data pipelines, modeling, experiment tracking, deployment, testing, monitoring, and iteration. The repository itself contains configuration, code examples, and links to accompanying lessons hosted on the Made With ML site, which provide detailed narrative explanations and diagrams. Instead of focusing only on model training, the course emphasizes best practices like modular code design, CI/CD, containerization, reproducibility, and responsible ML (including monitoring and feedback loops). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    CapsGNN

    CapsGNN

    A PyTorch implementation of "Capsule Graph Neural Network"

    A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019). The high-quality node embeddings learned from the Graph Neural Networks (GNNs) have been applied to a wide range of node-based applications and some of them have achieved state-of-the-art (SOTA) performance. However, when applying node embeddings learned from GNNs to generate graph embeddings, the scalar node representation may not suffice to preserve the node/graph properties efficiently, resulting in sub-optimal graph...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Keepsake

    Keepsake

    Version control for machine learning

    Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Google Cloud Storage. You can get the data back out using the command-line interface or a notebook.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Semantic Segmentation in PyTorch

    Semantic Segmentation in PyTorch

    Semantic segmentation models, datasets & losses implemented in PyTorch

    Semantic segmentation models, datasets and losses implemented in PyTorch. PyTorch and Torchvision needs to be installed before running the scripts, together with PIL and opencv for data-preprocessing and tqdm for showing the training progress. PyTorch v1.1 is supported (using the new supported tensoboard); can work with earlier versions, but instead of using tensoboard, use tensoboardX. Poly learning rate, where the learning rate is scaled down linearly from the starting value down to zero...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    BudgetML

    BudgetML

    Deploy a ML inference service on a budget in 10 lines of code

    Deploy a ML inference service on a budget in less than 10 lines of code. BudgetML is perfect for practitioners who would like to quickly deploy their models to an endpoint, but not waste a lot of time, money, and effort trying to figure out how to do this end-to-end. We built BudgetML because it's hard to find a simple way to get a model in production fast and cheaply. Deploying from scratch involves learning too many different concepts like SSL certificate generation, Docker, REST, Uvicorn/Gunicorn, backend servers etc., that are simply not within the scope of a typical data scientist. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Awesome AI-ML-DL

    Awesome AI-ML-DL

    Awesome Artificial Intelligence, Machine Learning and Deep Learning

    Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it. Study notes and a curated list of awesome resources of such topics. This repo is dedicated to engineers, developers, data scientists and all other professions that take interest in AI, ML, DL and related sciences. To make learning interesting and to create a place to easily find all the necessary material. Please contribute, watch, star, fork and share the repo with others in your community.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    TensorLayer

    TensorLayer

    Deep learning and reinforcement learning library for scientists

    ...This project can also be found at OpenI and Gitee. 3.0.0 has been pre-released, the current version supports TensorFlow, MindSpore and PaddlePaddle (partial) as the backends, allowing users to run the code on different hardware like Nvidia-GPU and Huawei-Ascend. In the future, it will support TensorFlow, MindSpore, PaddlePaddle, PyTorch and other backends. TensorLayer has a high-level layer/model abstraction which is effortless to learn. You can learn how deep learning can benefit your AI tasks in minutes through the massive examples.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Lambda Networks

    Lambda Networks

    Implementation of LambdaNetworks, a new approach to image recognition

    ...The new method utilizes λ layer, which captures interactions by transforming contexts into linear functions, termed lambdas, and applying these linear functions to each input separately. Shinel94 has added a Keras implementation! It won't be officially supported in this repository, so either copy / paste the code under ./lambda_networks/tfkeras.py or make sure to install tensorflow and keras before running the provided commands.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    fastNLP

    fastNLP

    fastNLP: A Modularized and Extensible NLP Framework

    fastNLP is a lightweight framework for natural language processing (NLP), the goal is to quickly implement NLP tasks and build complex models. A unified Tabular data container simplifies the data preprocessing process. Built-in Loader and Pipe for multiple datasets, eliminating the need for preprocessing code. Various convenient NLP tools, such as Embedding loading (including ELMo and BERT), intermediate data cache, etc.. Provide a variety of neural network components and recurrence models (covering tasks such as Chinese word segmentation, named entity recognition, syntactic analysis, text classification, text matching, metaphor resolution, summarization, etc.). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    GIMP ML

    GIMP ML

    AI for GNU Image Manipulation Program

    This repository introduces GIMP3-ML, a set of Python plugins for the widely popular GNU Image Manipulation Program (GIMP). It enables the use of recent advances in computer vision to the conventional image editing pipeline. Applications from deep learning such as monocular depth estimation, semantic segmentation, mask generative adversarial networks, image super-resolution, de-noising and coloring have been incorporated with GIMP through Python-based plugins. Additionally, operations on...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 22
    Stable Baselines

    Stable Baselines

    A fork of OpenAI Baselines, implementations of reinforcement learning

    Stable Baselines is a set of improved implementations of reinforcement learning algorithms based on OpenAI Baselines. You can read a detailed presentation of Stable Baselines in the Medium article. These algorithms will make it easier for the research community and industry to replicate, refine, and identify new ideas, and will create good baselines to build projects on top of. We expect these tools will be used as a base around which new ideas can be added, and as a tool for comparing a new...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    MMdnn

    MMdnn

    Tools to help users inter-operate among deep learning frameworks

    ...We implement a universal converter to convert DL models between frameworks, which means you can train a model with one framework and deploy it with another. During the model conversion, we generate some code snippets to simplify later retraining or inference. We provide a model collection to help you find some popular models. We provide a model visualizer to display the network architecture more intuitively. We provide some guidelines to help you deploy DL models to another hardware platform.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    StellarGraph

    StellarGraph

    Machine Learning on Graphs

    ...StellarGraph is built on TensorFlow 2 and its Keras high-level API, as well as Pandas and NumPy. It is thus user-friendly, modular and extensible. It interoperates smoothly with code that builds on these, such as the standard Keras layers and scikit-learn.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Tensor2Tensor

    Tensor2Tensor

    Library of deep learning models and datasets

    Deep Learning (DL) has enabled the rapid advancement of many useful technologies, such as machine translation, speech recognition and object detection. In the research community, one can find code open-sourced by the authors to help in replicating their results and further advancing deep learning. However, most of these DL systems use unique setups that require significant engineering effort and may only work for a specific problem or architecture, making it hard to run new experiments and compare the results. Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research. ...
    Downloads: 0 This Week
    Last Update:
    See Project