Showing 184 open source projects for "using"

View related business solutions
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 1
    Sonnet

    Sonnet

    TensorFlow-based neural network library

    Sonnet is a neural network library built on top of TensorFlow designed to provide simple, composable abstractions for machine learning research. Sonnet can be used to build neural networks for various purposes, including different types of learning. Sonnet’s programming model revolves around a single concept: modules. These modules can hold references to parameters, other modules and methods that apply some function on the user input. There are a number of predefined modules that already...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    GNNPCSAFT Web App

    GNNPCSAFT Web App

    Smart Thermodynamic Modeling with Graph Neural Networks

    The GNNPCSAFT Web App is an implementation of our project that focuses on using Graph Neural Networks (GNN) to estimate the pure-component parameters of the Equation of State PC-SAFT. We developed this app so the scientific community can access the model's results easily. In this app, the estimated pure-component parameters can be used to calculate thermodynamic properties and compare them with experimental data from the ThermoML Archive.
    Downloads: 90 This Week
    Last Update:
    See Project
  • 3
    TensorFlow Addons

    TensorFlow Addons

    Useful extra functionality for TensorFlow 2.x maintained by SIG-addons

    ...However, in a fast-moving field like ML, there are many interesting new developments that cannot be integrated into core TensorFlow (because their broad applicability is not yet clear, or it is mostly used by a smaller subset of the community). The maintainers of TensorFlow Addons can be found in the CODEOWNERS file of the repo. This file is parsed and pull requests will automatically tag the owners using a bot. If you would like to maintain something, please feel free to submit a PR. We encourage multiple owners for all submodules. TensorFlow Addons is actively working towards forward compatibility with TensorFlow 2.x.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Zylthra

    Zylthra

    Zylthra: A PyQt6 app to generate synthetic datasets with DataLLM.

    Welcome to Zylthra, a powerful Python-based desktop application built with PyQt6, designed to generate synthetic datasets using the DataLLM API from data.mostly.ai. This tool allows users to create custom datasets by defining columns, configuring generation parameters, and saving setups for reuse, all within a sleek, dark-themed interface.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    GNNPCSAFT

    GNNPCSAFT

    Smart Thermodynamic Modeling with Graph Neural Networks

    The GNNPCSAFT app is an implementation of our project that focuses on using Graph Neural Networks (GNN) to estimate the pure-component parameters of the Equation of State PC-SAFT. We developed this app so the scientific community can access the model's results easily. In this app, the estimated pure-component parameters can be used to calculate thermodynamic properties and compare them with experimental data from the ThermoML Archive.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    SageMaker Inference Toolkit

    SageMaker Inference Toolkit

    Serve machine learning models within a Docker container

    ...The SageMaker Inference Toolkit implements a model serving stack and can be easily added to any Docker container, making it deployable to SageMaker. This library's serving stack is built on Multi Model Server, and it can serve your own models or those you trained on SageMaker using machine learning frameworks with native SageMaker support.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Implicit

    Implicit

    Fast Python collaborative filtering for implicit feedback datasets

    This project provides fast Python implementations of several different popular recommendation algorithms for implicit feedback datasets. All models have multi-threaded training routines, using Cython and OpenMP to fit the models in parallel among all available CPU cores. In addition, the ALS and BPR models both have custom CUDA kernels - enabling fitting on compatible GPU’s. This library also supports using approximate nearest neighbour libraries such as Annoy, NMSLIB and Faiss for speeding up making recommendations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    PyTorch Implementation of SDE Solvers

    PyTorch Implementation of SDE Solvers

    Differentiable SDE solvers with GPU support and efficient sensitivity

    ...Training should stabilize after 500 iterations with the default hyperparameters. examples/sde_gan.py learns an SDE as a GAN, as in [2], [3]. The example trains an SDE as the generator of a GAN, whilst using a neural CDE [4] as the discriminator.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    find-similar

    find-similar

    User-friendly library to find similar objects

    The mission of the FindSimilar project is to provide a powerful and versatile open source library that empowers developers to efficiently find similar objects and perform comparisons across a variety of data types. Whether dealing with texts, images, audio, or more, our project aims to simplify the process of identifying similarities and enhancing decision-making. https://github.com/findsimilar/find-similar - GitHub repo http://demo.findsimilar.org/ - Demo project and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Automated RMM Tools | RMM Software Icon
    Automated RMM Tools | RMM Software

    Proactively monitor, manage, and support client networks with ConnectWise Automate

    Out-of-the-box scripts. Around-the-clock monitoring. Unmatched automation capabilities. Start doing more with less and exceed service delivery expectations.
    Learn More
  • 10
    OpenNMT-tf

    OpenNMT-tf

    Neural machine translation and sequence learning using TensorFlow

    OpenNMT is an open-source ecosystem for neural machine translation and neural sequence learning. OpenNMT-tf is a general-purpose sequence learning toolkit using TensorFlow 2. While neural machine translation is the main target task, it has been designed to more generally support sequence-to-sequence mapping, sequence tagging, sequence classification, language modeling. Models are described with code to allow training custom architectures and overriding default behavior. For example, the following instance defines a sequence-to-sequence model with 2 concatenated input features, a self-attentional encoder, and an attentional RNN decoder sharing its input and output embeddings. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    hloc

    hloc

    Visual localization made easy with hloc

    ...This codebase won the indoor/outdoor localization challenges at CVPR 2020 and ECCV 2020, in combination with SuperGlue, our graph neural network for feature matching. We provide step-by-step guides to localize with Aachen, InLoc, and to generate reference poses for your own data using SfM. Just download the datasets and you're reading to go! The notebook pipeline_InLoc.ipynb shows the steps for localizing with InLoc. It's much simpler since a 3D SfM model is not needed. We show in pipeline_SfM.ipynb how to run 3D reconstruction for an unordered set of images. This generates reference poses, and a nice sparse 3D model suitable for localization with the same pipeline as Aachen.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    Lightning Flash

    Lightning Flash

    Flash enables you to easily configure and run complex AI recipes

    ...For example, for image segmentation where your data is stored in folders, you would use the from_folders method of the SemanticSegmentationData class. Our tasks come loaded with pre-trained backbones and (where applicable) heads. You can view the available backbones to use with your task using available_backbones. With Flash, swapping among 40+ optimizers and 15 + schedulers recipes are simple.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 13
    Lightning Bolts

    Lightning Bolts

    Toolbox of models, callbacks, and datasets for AI/ML researchers

    Bolts package provides a variety of components to extend PyTorch Lightning, such as callbacks & datasets, for applied research and production. Torch ORT converts your model into an optimized ONNX graph, speeding up training & inference when using NVIDIA or AMD GPUs. We can introduce sparsity during fine-tuning with SparseML, which ultimately allows us to leverage the DeepSparse engine to see performance improvements at inference time.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    CausalNex

    CausalNex

    A Python library that helps data scientists to infer causation

    CausalNex is a Python library that uses Bayesian Networks to combine machine learning and domain expertise for causal reasoning. You can use CausalNex to uncover structural relationships in your data, learn complex distributions, and observe the effect of potential interventions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Transformer Reinforcement Learning X

    Transformer Reinforcement Learning X

    A repo for distributed training of language models with Reinforcement

    trlX is a distributed training framework designed from the ground up to focus on fine-tuning large language models with reinforcement learning using either a provided reward function or a reward-labeled dataset. Training support for Hugging Face models is provided by Accelerate-backed trainers, allowing users to fine-tune causal and T5-based language models of up to 20B parameters, such as facebook/opt-6.7b, EleutherAI/gpt-neox-20b, and google/flan-t5-xxl. For models beyond 20B parameters, trlX provides NVIDIA NeMo-backed trainers that leverage efficient parallelism techniques to scale effectively.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    TensorFlow Ranking

    TensorFlow Ranking

    Learning to rank in TensorFlow

    ...We envision that this library will provide a convenient open platform for hosting and advancing state-of-the-art ranking models based on deep learning techniques, and thus facilitate both academic research and industrial applications. We provide a demo, with no installation required, to get started on using TF-Ranking. This demo runs on a colaboratory notebook, an interactive Python environment. Using sparse features and embeddings in TF-Ranking.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    TF2DeepFloorplan

    TF2DeepFloorplan

    TF2 Deep FloorPlan Recognition using a Multi-task Network

    TF2 Deep FloorPlan Recognition using a Multi-task Network with Room-boundary-Guided Attention. Enable tensorboard, quantization, flask, tflite, docker, github actions and google colab. This repo contains a basic procedure to train and deploy the DNN model suggested by the paper 'Deep Floor Plan Recognition using a Multi-task Network with Room-boundary-Guided Attention'.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18

    Lumi-HSP

    This is an AI language model that can predict Heart failure or stroke

    Using thsi AI model, you can predict the chances of heart stroke and heart failure. HIGLIGHTS : 1. Accuracy of this model is 95% 2. This model uses the powerful Machine Learning algorithm "GradientBoosting" for predicting the outcomes. 3. An easy to use model and accessible to everyone.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    TensorFlow Documentation

    TensorFlow Documentation

    TensorFlow documentation

    An end-to-end platform for machine learning. TensorFlow makes it easy to create ML models that can run in any environment. Learn how to use the intuitive APIs through interactive code samples.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    sense2vec

    sense2vec

    Contextually-keyed word vectors

    sense2vec (Trask et. al, 2015) is a nice twist on word2vec that lets you learn more interesting and detailed word vectors. This library is a simple Python implementation for loading, querying and training sense2vec models. For more details, check out our blog post. To explore the semantic similarities across all Reddit comments of 2015 and 2019, see the interactive demo.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    OGB

    OGB

    Benchmark datasets, data loaders, and evaluators for graph machine

    The Open Graph Benchmark (OGB) is a collection of realistic, large-scale, and diverse benchmark datasets for machine learning on graphs. OGB datasets are automatically downloaded, processed, and split using the OGB Data Loader. The model performance can be evaluated using the OGB Evaluator in a unified manner. OGB is a community-driven initiative in active development. We expect the benchmark datasets to evolve. OGB provides a diverse set of challenging and realistic benchmark datasets that are of varying sizes and cover a variety graph machine learning tasks, including prediction of node, link, and graph properties. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    NanoDet-Plus

    NanoDet-Plus

    Lightweight anchor-free object detection model

    Super fast and high accuracy lightweight anchor-free object detection model. Real-time on mobile devices. NanoDet is a FCOS-style one-stage anchor-free object detection model which using Generalized Focal Loss as classification and regression loss. In NanoDet-Plus, we propose a novel label assignment strategy with a simple assign guidance module (AGM) and a dynamic soft label assigner (DSLA) to solve the optimal label assignment problem in lightweight model training. We also introduce a light feature pyramid called Ghost-PAN to enhance multi-layer feature fusion. ...
    Downloads: 11 This Week
    Last Update:
    See Project
  • 23
    DIG

    DIG

    A library for graph deep learning research

    ...If you are working or plan to work on research in graph deep learning, DIG enables you to develop your own methods within our extensible framework, and compare with current baseline methods using common datasets and evaluation metrics without extra efforts. It includes unified implementations of data interfaces, common algorithms, and evaluation metrics for several advanced tasks. Our goal is to enable researchers to easily implement and benchmark algorithms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    LightFM

    LightFM

    A Python implementation of LightFM, a hybrid recommendation algorithm

    LightFM is a Python implementation of a number of popular recommendation algorithms for both implicit and explicit feedback, including efficient implementation of BPR and WARP ranking losses. It's easy to use, fast (via multithreaded model estimation), and produces high-quality results. It also makes it possible to incorporate both item and user metadata into the traditional matrix factorization algorithms. It represents each user and item as the sum of the latent representations of their...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Keras Attention Mechanism

    Keras Attention Mechanism

    Attention mechanism Implementation for Keras

    Many-to-one attention mechanism for Keras. We demonstrate that using attention yields a higher accuracy on the IMDB dataset. We consider two LSTM networks: one with this attention layer and the other one with a fully connected layer. Both have the same number of parameters for a fair comparison (250K). The attention is expected to be the highest after the delimiters. An overview of the training is shown below, where the top represents the attention map and the bottom the ground truth. ...
    Downloads: 0 This Week
    Last Update:
    See Project