Showing 531 open source projects for "openai-python"

View related business solutions
  • Build on Google Cloud with $300 in Free Credit Icon
    Build on Google Cloud with $300 in Free Credit

    New to Google Cloud? Get $300 in free credit to explore Compute Engine, BigQuery, Cloud Run, Vertex AI, and 150+ other products.

    Start your next project with $300 in free Google Cloud credit. Spin up VMs, run containers, query exabytes in BigQuery, or build AI apps with Vertex AI and Gemini. Once your credits are used, keep building with 20+ products with free monthly usage, including Compute Engine, Cloud Storage, GKE, and Cloud Run functions. Sign up to start building right away.
    Start Free Trial
  • Go from Data Warehouse to Data and AI platform with BigQuery Icon
    Go from Data Warehouse to Data and AI platform with BigQuery

    Build, train, and run ML models with simple SQL. Automate data prep, analysis, and predictions with built-in AI assistance from Gemini.

    BigQuery is more than a data warehouse—it's an autonomous data-to-AI platform. Use familiar SQL to train ML models, run time-series forecasts, and generate AI-powered insights with native Gemini integration. Built-in agents handle data engineering and data science workflows automatically. Get $300 in free credit, query 1 TB, and store 10 GB free monthly.
    Try BigQuery Free
  • 1
    TorchIO

    TorchIO

    Medical imaging toolkit for deep learning

    ...TorchIO is a Python package containing a set of tools to efficiently read, preprocess, sample, augment, and write 3D medical images in deep learning applications written in PyTorch, including intensity and spatial transforms for data augmentation and preprocessing. Transforms include typical computer vision operations such as random affine transformations and also domain-specific ones such as simulation of intensity artifacts due to MRI magnetic field inhomogeneity.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Haiku

    Haiku

    JAX-based neural network library

    ...It preserves Sonnet’s module-based programming model for state management while retaining access to JAX’s function transformations. Haiku can be expected to compose with other libraries and work well with the rest of JAX. Similar to Sonnet modules, Haiku modules are Python objects that hold references to their own parameters, other modules, and methods that apply functions on user inputs.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    DeepChem

    DeepChem

    Democratizing Deep-Learning for Drug Discovery, Quantum Chemistry, etc

    DeepChem aims to provide a high-quality open-source toolchain that democratizes the use of deep learning in drug discovery, materials science, quantum chemistry, and biology. DeepChem currently supports Python 3.7 through 3.9 and requires these packages on any condition. DeepChem has a number of "soft" requirements. If you face some errors like ImportError: This class requires XXXX, you may need to install some packages. Deepchem provides support for TensorFlow, PyTorch, JAX and each requires an individual pip Installation. The DeepChem project maintains an extensive collection of tutorials. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    TorchMetrics AI

    TorchMetrics AI

    Machine learning metrics for distributed, scalable PyTorch application

    TorchMetrics is a collection of 100+ PyTorch metrics implementations and an easy-to-use API to create custom metrics.
    Downloads: 1 This Week
    Last Update:
    See Project
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 5
    Nixtla TimeGPT

    Nixtla TimeGPT

    TimeGPT-1: production ready pre-trained Time Series Foundation Model

    TimeGPT is a production ready, generative pretrained transformer for time series. It's capable of accurately predicting various domains such as retail, electricity, finance, and IoT with just a few lines of code. Whether you're a bank forecasting market trends or a startup predicting product demand, TimeGPT democratizes access to cutting-edge predictive insights, eliminating the need for a dedicated team of machine learning engineers. A generative model for time series. TimeGPT is capable of...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 6
    BindsNET

    BindsNET

    Simulation of spiking neural networks (SNNs) using PyTorch

    A Python package used for simulating spiking neural networks (SNNs) on CPUs or GPUs using PyTorch Tensor functionality. BindsNET is a spiking neural network simulation library geared towards the development of biologically inspired algorithms for machine learning. This package is used as part of ongoing research on applying SNNs to machine learning (ML) and reinforcement learning (RL) problems in the Biologically Inspired Neural & Dynamical Systems (BINDS) lab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Adversarial Robustness Toolbox

    Adversarial Robustness Toolbox

    Adversarial Robustness Toolbox (ART) - Python Library for ML security

    Adversarial Robustness Toolbox (ART) is a Python library for Machine Learning Security. ART provides tools that enable developers and researchers to evaluate, defend, certify and verify Machine Learning models and applications against the adversarial threats of Evasion, Poisoning, Extraction, and Inference. ART supports all popular machine learning frameworks (TensorFlow, Keras, PyTorch, MXNet, sci-kit-learn, XGBoost, LightGBM, CatBoost, GPy, etc.), all data types (images, tables, audio, video, etc.) and machine learning tasks (classification, object detection, generation, certification, etc.).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    AmpliGraph

    AmpliGraph

    Python library for Representation Learning on Knowledge Graphs

    Open source library based on TensorFlow that predicts links between concepts in a knowledge graph. AmpliGraph is a suite of neural machine learning models for relational Learning, a branch of machine learning that deals with supervised learning on knowledge graphs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Evidently

    Evidently

    Evaluate and monitor ML models from validation to production

    Evidently is an open-source Python library for data scientists and ML engineers. It helps evaluate, test, and monitor ML models from validation to production. It works with tabular, text data and embeddings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Run Any Workload on Compute Engine VMs Icon
    Run Any Workload on Compute Engine VMs

    From dev environments to AI training, choose preset or custom VMs with 1–96 vCPUs and industry-leading 99.95% uptime SLA.

    Compute Engine delivers high-performance virtual machines for web apps, databases, containers, and AI workloads. Choose from general-purpose, compute-optimized, or GPU/TPU-accelerated machine types—or build custom VMs to match your exact specs. With live migration and automatic failover, your workloads stay online. New customers get $300 in free credits.
    Try Compute Engine
  • 10
    Tensorforce

    Tensorforce

    A TensorFlow library for applied reinforcement learning

    Tensorforce is an open-source deep reinforcement learning framework built on TensorFlow, emphasizing modularized design and straightforward usability for applied research and practice.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    FiftyOne

    FiftyOne

    The open-source tool for building high-quality datasets

    The open-source tool for building high-quality datasets and computer vision models. Nothing hinders the success of machine learning systems more than poor-quality data. And without the right tools, improving a model can be time-consuming and inefficient. FiftyOne supercharges your machine learning workflows by enabling you to visualize datasets and interpret models faster and more effectively. Improving data quality and understanding your model’s failure modes are the most impactful ways to...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 12
    StatsForecast

    StatsForecast

    Fast forecasting with statistical and econometric models

    ...Its internal implementation leverages numba to compile performance-critical code to optimized machine-level instructions, which makes the models much faster than many traditional Python counterparts.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    TorchMetrics

    TorchMetrics

    Machine learning metrics for distributed, scalable PyTorch application

    ...Automatic synchronization between multiple devices. Metric arithmetic. Similar to torch.nn, most metrics have both a module-based and a functional version. The functional versions are simple python functions that as input take torch.tensors and return the corresponding metric as a torch.tensor.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    Audiomentations

    Audiomentations

    A Python library for audio data augmentation

    A Python library for audio data augmentation. Inspired by albumentations. Useful for deep learning. Runs on CPU. Supports mono audio and multichannel audio. Can be integrated in training pipelines in e.g. Tensorflow/Keras or Pytorch. Has helped people get world-class results in Kaggle competitions. Is used by companies making next-generation audio products.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    x-transformers

    x-transformers

    A simple but complete full-attention transformer

    A simple but complete full-attention transformer with a set of promising experimental features from various papers. Proposes adding learned memory key/values prior to attending. They were able to remove feedforwards altogether and attain a similar performance to the original transformers. I have found that keeping the feedforwards and adding the memory key/values leads to even better performance. Proposes adding learned tokens, akin to CLS tokens, named memory tokens, that is passed through...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 16
    NGBoost

    NGBoost

    Natural Gradient Boosting for Probabilistic Prediction

    ngboost is a Python library that implements Natural Gradient Boosting, as described in "NGBoost: Natural Gradient Boosting for Probabilistic Prediction". It is built on top of Scikit-Learn and is designed to be scalable and modular with respect to the choice of proper scoring rule, distribution, and base learner. A didactic introduction to the methodology underlying NGBoost is available in this slide deck.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Alibi Detect

    Alibi Detect

    Algorithms for outlier, adversarial and drift detection

    Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline detectors for tabular data, text, images and time series. Both TensorFlow and PyTorch backends are supported for drift detection.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    OpenCLIP

    OpenCLIP

    An open source implementation of CLIP

    The goal of this repository is to enable training models with contrastive image-text supervision and to investigate their properties such as robustness to distribution shift. Our starting point is an implementation of CLIP that matches the accuracy of the original CLIP models when trained on the same dataset. Specifically, a ResNet-50 model trained with our codebase on OpenAI's 15 million image subset of YFCC achieves 32.7% top-1 accuracy on ImageNet. OpenAI's CLIP model reaches 31.3% when...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 19
    Foolbox

    Foolbox

    Python toolbox to create adversarial examples

    ...Foolbox provides a large collection of state-of-the-art gradient-based and decision-based adversarial attacks. Catch bugs before running your code thanks to extensive type annotations in Foolbox. Foolbox is a Python library that lets you easily run adversarial attacks against machine learning models like deep neural networks. It is built on top of EagerPy and works natively with models in PyTorch, TensorFlow, and JAX.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Causal ML

    Causal ML

    Uplift modeling and causal inference with machine learning algorithms

    Causal ML is a Python package that provides a suite of uplift modeling and causal inference methods using machine learning algorithms based on recent research [1]. It provides a standard interface that allows users to estimate the Conditional Average Treatment Effect (CATE) or Individual Treatment Effect (ITE) from experimental or observational data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Hivemind

    Hivemind

    Decentralized deep learning in PyTorch. Built to train models

    Hivemind is a PyTorch library for decentralized deep learning across the Internet. Its intended usage is training one large model on hundreds of computers from different universities, companies, and volunteers. Distributed training without a master node: Distributed Hash Table allows connecting computers in a decentralized network. Fault-tolerant backpropagation: forward and backward passes succeed even if some nodes are unresponsive or take too long to respond. Decentralized parameter...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    Alibi Explain

    Alibi Explain

    Algorithms for explaining machine learning models

    Alibi is a Python library aimed at machine learning model inspection and interpretation. The focus of the library is to provide high-quality implementations of black-box, white-box, local and global explanation methods for classification and regression models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    KerasTuner

    KerasTuner

    A Hyperparameter Tuning Library for Keras

    KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily configure your search space with a define-by-run syntax, then leverage one of the available search algorithms to find the best hyperparameter values for your models. KerasTuner comes with Bayesian Optimization, Hyperband, and Random Search algorithms built-in, and is also designed to be easy for researchers to extend in order to experiment with new search...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    TensorFlow Datasets

    TensorFlow Datasets

    TFDS is a collection of datasets ready to use with TensorFlow,

    TensorFlow Datasets is a collection of datasets ready to use, with TensorFlow or other Python ML frameworks, such as Jax. All datasets are exposed as tf.data. Datasets , enabling easy-to-use and high-performance input pipelines. To get started see the guide and our list of datasets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Evaluate

    Evaluate

    A library for easily evaluating machine learning models and datasets

    Evaluate is a library that makes evaluating and comparing models and reporting their performance easier and more standardized.
    Downloads: 0 This Week
    Last Update:
    See Project
MongoDB Logo MongoDB
Gen AI apps are built with MongoDB Atlas
Atlas offers built-in vector search and global availability across 125+ regions. Start building AI apps faster, all in one place.
Try Free →