Showing 523 open source projects for "artificial intelligence algorithm"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    huggingface_hub

    huggingface_hub

    The official Python client for the Huggingface Hub

    The huggingface_hub library allows you to interact with the Hugging Face Hub, a platform democratizing open-source Machine Learning for creators and collaborators. Discover pre-trained models and datasets for your projects or play with the thousands of machine-learning apps hosted on the Hub. You can also create and share your own models, datasets, and demos with the community. The huggingface_hub library provides a simple way to do all these things with Python.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    Causal ML

    Causal ML

    Uplift modeling and causal inference with machine learning algorithms

    Causal ML is a Python package that provides a suite of uplift modeling and causal inference methods using machine learning algorithms based on recent research [1]. It provides a standard interface that allows users to estimate the Conditional Average Treatment Effect (CATE) or Individual Treatment Effect (ITE) from experimental or observational data. Essentially, it estimates the causal impact of intervention T on outcome Y for users with observed features X, without strong assumptions on...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    DoWhy

    DoWhy

    DoWhy is a Python library for causal inference

    DoWhy is a Python library for causal inference that supports explicit modeling and testing of causal assumptions. DoWhy is based on a unified language for causal inference, combining causal graphical models and potential outcomes frameworks. Much like machine learning libraries have done for prediction, DoWhy is a Python library that aims to spark causal thinking and analysis. DoWhy provides a wide variety of algorithms for effect estimation, causal structure learning, diagnosis of causal...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    MindsDB

    MindsDB

    Making Enterprise Data Intelligent and Responsive for AI

    MindsDB is an AI data solution that enables humans, AI, agents, and applications to query data in natural language and SQL, and get highly accurate answers across disparate data sources and types. MindsDB connects to diverse data sources and applications, and unifies petabyte-scale structured and unstructured data. Powered by an industry-first cognitive engine that can operate anywhere (on-prem, VPC, serverless), it empowers both humans and AI with highly informed decision-making...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    dm_control

    dm_control

    DeepMind's software stack for physics-based simulation

    DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo. DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo physics. The MuJoCo Python bindings support three different OpenGL rendering backends: EGL (headless, hardware-accelerated), GLFW (windowed, hardware-accelerated), and OSMesa (purely software-based). At least one of these three backends must be available in order render...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    MiniSom

    MiniSom

    MiniSom is a minimalistic implementation of the Self Organizing Maps

    MiniSom is a minimalistic and Numpy-based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial Neural Network able to convert complex, nonlinear statistical relationships between high-dimensional data items into simple geometric relationships on a low-dimensional display. Minisom is designed to allow researchers to easily build on top of it and to give students the ability to quickly grasp its details. The project initially aimed for a minimalistic implementation...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Materials Discovery: GNoME
    Materials Discovery (GNoME) is a large-scale research initiative by Google DeepMind focused on applying graph neural networks to accelerate the discovery of stable inorganic crystal materials. The project centers on Graph Networks for Materials Exploration (GNoME), a message-passing neural network architecture trained on density functional theory (DFT) data to predict material stability and energy formation. Using GNoME, DeepMind identified 381,000 new stable materials, later expanding the...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    Core ML Tools

    Core ML Tools

    Core ML tools contain supporting tools for Core ML model conversion

    Use Core ML Tools (coremltools) to convert machine learning models from third-party libraries to the Core ML format. This Python package contains the supporting tools for converting models from training libraries. Core ML is an Apple framework to integrate machine learning models into your app. Core ML provides a unified representation for all models. Your app uses Core ML APIs and user data to make predictions, and to fine-tune models, all on the user’s device. Core ML optimizes on-device...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    TPOT

    TPOT

    A Python Automated Machine Learning tool that optimizes ML

    Consider TPOT your Data Science Assistant. TPOT is a Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming. TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assistant. TPOT is a Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    zvt

    zvt

    Modular quant framework

    For practical trading, a complex algorithm is fragile, a complex algorithm building on a complex facility is more fragile, complex algorithm building on a complex facility by a complex team is more and more fragile. zvt wants to provide a simple facility for building a straightforward algorithm. Technologies come and technologies go, but market insight is forever. Your world is built by core concepts inside you, so it’s you. zvt world is built by core concepts inside the market, so it’s zvt...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    BindsNET

    BindsNET

    Simulation of spiking neural networks (SNNs) using PyTorch

    A Python package used for simulating spiking neural networks (SNNs) on CPUs or GPUs using PyTorch Tensor functionality. BindsNET is a spiking neural network simulation library geared towards the development of biologically inspired algorithms for machine learning. This package is used as part of ongoing research on applying SNNs to machine learning (ML) and reinforcement learning (RL) problems in the Biologically Inspired Neural & Dynamical Systems (BINDS) lab.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    PyKEEN

    PyKEEN

    A Python library for learning and evaluating knowledge graph embedding

    PyKEEN (Python KnowlEdge EmbeddiNgs) is a Python package designed to train and evaluate knowledge graph embedding models (incorporating multi-modal information). PyKEEN is a Python package for reproducible, facile knowledge graph embeddings. PyKEEN has a function pykeen.env() that magically prints relevant version information about PyTorch, CUDA, and your operating system that can be used for debugging. If you’re in a Jupyter Notebook, it will be pretty-printed as an HTML table.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    BudouX

    BudouX

    Standalone, small, language-neutral

    Standalone. Small. Language-neutral. BudouX is the successor to Budou, the machine learning-powered line break organizer tool. It is standalone. It works with no dependency on third-party word segmenters such as Google cloud natural language API. It is small. It takes only around 15 KB including its machine learning model. It's reasonable to use it even on the client-side. It is language-neutral. You can train a model for any language by feeding a dataset to BudouX’s training...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    HDBSCAN

    HDBSCAN

    A high performance implementation of HDBSCAN clustering

    ..., is intuitive and easy to select. HDBSCAN is ideal for exploratory data analysis; it's a fast and robust algorithm that you can trust to return meaningful clusters (if there are any).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Audiomentations

    Audiomentations

    A Python library for audio data augmentation

    A Python library for audio data augmentation. Inspired by albumentations. Useful for deep learning. Runs on CPU. Supports mono audio and multichannel audio. Can be integrated in training pipelines in e.g. Tensorflow/Keras or Pytorch. Has helped people get world-class results in Kaggle competitions. Is used by companies making next-generation audio products. Mix in another sound, e.g. a background noise. Useful if your original sound is clean and you want to simulate an environment where...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    Hivemind

    Hivemind

    Decentralized deep learning in PyTorch. Built to train models

    Hivemind is a PyTorch library for decentralized deep learning across the Internet. Its intended usage is training one large model on hundreds of computers from different universities, companies, and volunteers. Distributed training without a master node: Distributed Hash Table allows connecting computers in a decentralized network. Fault-tolerant backpropagation: forward and backward passes succeed even if some nodes are unresponsive or take too long to respond. Decentralized parameter...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    tsai

    tsai

    Time series Timeseries Deep Learning Machine Learning Pytorch fastai

    tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series tasks like classification, regression, forecasting, and imputation. Starting with tsai 0.3.0 tsai will only install hard dependencies. Other soft dependencies (which are only required for selected tasks) will not be installed by default (this is the recommended approach. If you require any of the dependencies that is not installed, tsai will ask you to install...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    MONAI

    MONAI

    AI Toolkit for Healthcare Imaging

    The MONAI framework is the open-source foundation being created by Project MONAI. MONAI is a freely available, community-supported, PyTorch-based framework for deep learning in healthcare imaging. It provides domain-optimized foundational capabilities for developing healthcare imaging training workflows in a native PyTorch paradigm. Project MONAI also includes MONAI Label, an intelligent open source image labeling and learning tool that helps researchers and clinicians collaborate, create...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    Diffgram

    Diffgram

    Training data (data labeling, annotation, workflow) for all data types

    From ingesting data to exploring it, annotating it, and managing workflows. Diffgram is a single application that will improve your data labeling and bring all aspects of training data under a single roof. Diffgram is world’s first truly open source training data platform that focuses on giving its users an unlimited experience. This is aimed to reduce your data labeling bills and increase your Training Data Quality. Training Data is the art of supervising machines through data. This...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    OpenCLIP

    OpenCLIP

    An open source implementation of CLIP

    The goal of this repository is to enable training models with contrastive image-text supervision and to investigate their properties such as robustness to distribution shift. Our starting point is an implementation of CLIP that matches the accuracy of the original CLIP models when trained on the same dataset. Specifically, a ResNet-50 model trained with our codebase on OpenAI's 15 million image subset of YFCC achieves 32.7% top-1 accuracy on ImageNet. OpenAI's CLIP model reaches 31.3% when...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    tf2onnx

    tf2onnx

    Convert TensorFlow, Keras, Tensorflow.js and Tflite models to ONNX

    tf2onnx converts TensorFlow (tf-1.x or tf-2.x), keras, tensorflow.js and tflite models to ONNX via command line or python API. Note: tensorflow.js support was just added. While we tested it with many tfjs models from tfhub, it should be considered experimental. TensorFlow has many more ops than ONNX and occasionally mapping a model to ONNX creates issues. tf2onnx will use the ONNX version installed on your system and installs the latest ONNX version if none is found. We support and test ONNX...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    Deepchecks

    Deepchecks

    Test Suites for validating ML models & data

    Deepchecks is the leading tool for testing and for validating your machine learning models and data, and it enables doing so with minimal effort. Deepchecks accompany you through various validation and testing needs such as verifying your data’s integrity, inspecting its distributions, validating data splits, evaluating your model and comparing between different models. While you’re in the research phase, and want to validate your data, find potential methodological problems, and/or validate...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    AIF360

    AIF360

    A comprehensive set of fairness metrics for datasets

    This extensible open source toolkit can help you examine, report, and mitigate discrimination and bias in machine learning models throughout the AI application lifecycle. We invite you to use and improve it. The AI Fairness 360 toolkit is an extensible open-source library containing techniques developed by the research community to help detect and mitigate bias in machine learning models throughout the AI application lifecycle. AI Fairness 360 package is available in both Python and R. The...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    ClearML

    ClearML

    Streamline your ML workflow

    ClearML is an open source platform that automates and simplifies developing and managing machine learning solutions for thousands of data science teams all over the world. It is designed as an end-to-end MLOps suite allowing you to focus on developing your ML code & automation, while ClearML ensures your work is reproducible and scalable. The ClearML Python Package for integrating ClearML into your existing scripts by adding just two lines of code, and optionally extending your experiments...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    PML

    PML

    The easiest way to use deep metric learning in your application

    This library contains 9 modules, each of which can be used independently within your existing codebase, or combined together for a complete train/test workflow. To compute the loss in your training loop, pass in the embeddings computed by your model, and the corresponding labels. The embeddings should have size (N, embedding_size), and the labels should have size (N), where N is the batch size. The TripletMarginLoss computes all possible triplets within the batch, based on the labels you...
    Downloads: 2 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.