Showing 105 open source projects for "python framework"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • Photo and Video Editing APIs and SDKs Icon
    Photo and Video Editing APIs and SDKs

    Trusted by 150 million+ creators and businesses globally

    Unlock Picsart's full editing suite by embedding our Editor SDK directly into your platform. Offer your users the power of a full design suite without leaving your site.
    Learn More
  • 1
    BentoML

    BentoML

    Unified Model Serving Framework

    BentoML simplifies ML model deployment and serves your models at a production scale. Support multiple ML frameworks natively: Tensorflow, PyTorch, XGBoost, Scikit-Learn and many more! Define custom serving pipeline with pre-processing, post-processing and ensemble models. Standard .bento format for packaging code, models and dependencies for easy versioning and deployment. Integrate with any training pipeline or ML experimentation platform. Parallelize compute-intense model inference...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Jina

    Jina

    Build cross-modal and multimodal applications on the cloud

    Jina is a framework that empowers anyone to build cross-modal and multi-modal applications on the cloud. It uplifts a PoC into a production-ready service. Jina handles the infrastructure complexity, making advanced solution engineering and cloud-native technologies accessible to every developer. Build applications that deliver fresh insights from multiple data types such as text, image, audio, video, 3D mesh, PDF with Jina AI’s DocArray. Polyglot gateway that supports gRPC, Websockets, HTTP...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    AWS Neuron

    AWS Neuron

    Powering Amazon custom machine learning chips

    AWS Neuron is a software development kit (SDK) for running machine learning inference using AWS Inferentia chips. It consists of a compiler, run-time, and profiling tools that enable developers to run high-performance and low latency inference using AWS Inferentia-based Amazon EC2 Inf1 instances. Using Neuron developers can easily train their machine learning models on any popular framework such as TensorFlow, PyTorch, and MXNet, and run it optimally on Amazon EC2 Inf1 instances. You can...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Lightning-Hydra-Template

    Lightning-Hydra-Template

    PyTorch Lightning + Hydra. A very user-friendly template

    ... on each other. PyTorch Lightning, a lightweight PyTorch wrapper for high-performance AI research. Think of it as a framework for organizing your PyTorch code. Hydra, a framework for elegantly configuring complex applications. The key feature is the ability to dynamically create a hierarchical configuration by composition and override it through config files and the command line.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Sales CRM and Pipeline Management Software | Pipedrive Icon
    Sales CRM and Pipeline Management Software | Pipedrive

    The easy and effective CRM for closing deals

    Pipedrive’s simple interface empowers salespeople to streamline workflows and unite sales tasks in one workspace. Unlock instant sales insights with Pipedrive’s visual sales pipeline and fine-tune your strategy with robust reporting features and a personalized AI Sales Assistant.
    Try it for free
  • 5
    D2L.ai

    D2L.ai

    Interactive deep learning book with multi-framework code

    Interactive deep learning book with multi-framework code, math, and discussions. Adopted at 300 universities from 55 countries including Stanford, MIT, Harvard, and Cambridge. This open-source book represents our attempt to make deep learning approachable, teaching you the concepts, the context, and the code. The entire book is drafted in Jupyter notebooks, seamlessly integrating exposition figures, math, and interactive examples with self-contained code. Offers sufficient technical depth...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    MetaTransformer

    MetaTransformer

    Meta-Transformer for Unified Multimodal Learning

    We're thrilled to present OneLLM, an ensembling Meta-Transformer framework with Multimodal Large Language Models, which performs multimodal joint training, supports more modalities including fMRI, Depth, and Normal Maps, and demonstrates very impressive performances on 25 benchmarks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Lightning Flash

    Lightning Flash

    Flash enables you to easily configure and run complex AI recipes

    Your PyTorch AI Factory, Flash enables you to easily configure and run complex AI recipes for over 15 tasks across 7 data domains. In a nutshell, Flash is the production-grade research framework you always dreamed of but didn't have time to build. All data loading in Flash is performed via a from_* classmethod on a DataModule. Which DataModule to use and which from_* methods are available depends on the task you want to perform. For example, for image segmentation where your data is stored...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Transformer Reinforcement Learning X

    Transformer Reinforcement Learning X

    A repo for distributed training of language models with Reinforcement

    trlX is a distributed training framework designed from the ground up to focus on fine-tuning large language models with reinforcement learning using either a provided reward function or a reward-labeled dataset. Training support for Hugging Face models is provided by Accelerate-backed trainers, allowing users to fine-tune causal and T5-based language models of up to 20B parameters, such as facebook/opt-6.7b, EleutherAI/gpt-neox-20b, and google/flan-t5-xxl. For models beyond 20B parameters, trlX...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Horovod

    Horovod

    Distributed training framework for TensorFlow, Keras, PyTorch, etc.

    ... processing and model training into a single pipeline. Once Horovod has been configured, the same infrastructure can be used to train models with any framework, making it easy to switch between TensorFlow, PyTorch, MXNet, and future frameworks as machine learning tech stacks continue to evolve. Start scaling your model training with just a few lines of Python code. Scale up to hundreds of GPUs with upwards of 90% scaling efficiency.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Test your software product anywhere in the world Icon
    Test your software product anywhere in the world

    Get feedback from real people across 190+ countries with the devices, environments, and payment instruments you need for your perfect test.

    Global App Testing is a managed pool of freelancers used by Google, Meta, Microsoft, and other world-beating software companies.
    Try us today.
  • 10
    Spektral

    Spektral

    Graph Neural Networks with Keras and Tensorflow 2

    Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to provide a simple but flexible framework for creating graph neural networks (GNNs). You can use Spektral for classifying the users of a social network, predicting molecular properties, generating new graphs with GANs, clustering nodes, predicting links, and any other task where data is described by graphs. Spektral implements some of the most popular layers for graph...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    NanoDet-Plus

    NanoDet-Plus

    Lightweight anchor-free object detection model

    ... feature pyramid called Ghost-PAN to enhance multi-layer feature fusion. These improvements boost previous NanoDet's detection accuracy by 7 mAP on COCO dataset. NanoDet provide multi-backend C++ demo including ncnn, OpenVINO and MNN. There is also an Android demo based on ncnn library. Supports various backends including ncnn, MNN and OpenVINO. Also provide Android demo based on ncnn inference framework.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 12
    DIG

    DIG

    A library for graph deep learning research

    ... your own methods within our extensible framework, and compare with current baseline methods using common datasets and evaluation metrics without extra efforts. It includes unified implementations of data interfaces, common algorithms, and evaluation metrics for several advanced tasks. Our goal is to enable researchers to easily implement and benchmark algorithms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Sockeye

    Sockeye

    Sequence-to-sequence framework, focused on Neural Machine Translation

    Sockeye is an open-source sequence-to-sequence framework for Neural Machine Translation built on PyTorch. It implements distributed training and optimized inference for state-of-the-art models, powering Amazon Translate and other MT applications. For a quickstart guide to training a standard NMT model on any size of data, see the WMT 2014 English-German tutorial. If you are interested in collaborating or have any questions, please submit a pull request or issue. You can also send questions...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    SMILI

    SMILI

    Scientific Visualisation Made Easy

    ... user interfaces and/or via the command-line. See our YouTube channel for tutorial videos via the homepage. The applications are all built out of a uniform user-interface framework that provides a very high level (Qt) interface to powerful image processing and scientific visualisation algorithms from the Insight Toolkit (ITK) and Visualisation Toolkit (VTK). The framework allows one to build stand-alone medical imaging applications quickly and easily.
    Leader badge
    Downloads: 6 This Week
    Last Update:
    See Project
  • 15
    Uranie

    Uranie

    Uranie is CEA's uncertainty analysis platform, based on ROOT

    Uranie is a sensitivity and uncertainty analysis plateform based on the ROOT framework (http://root.cern.ch) . It is developed at CEA, the French Atomic Energy Commission (http://www.cea.fr). It provides various tools for: - data analysis - sampling - statistical modeling - optimisation - sensitivity analysis - uncertainty analysis - running code on high performance computers - etc. Thanks to ROOT, it is easily scriptable in CINT (c++ like syntax) and Python. Is is available...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    Merlion

    Merlion

    A Machine Learning Framework for Time Series Intelligence

    Merlion is a Python library for time series intelligence. It provides an end-to-end machine learning framework that includes loading and transforming data, building and training models, post-processing model outputs, and evaluating model performance. It supports various time series learning tasks, including forecasting, anomaly detection, and change point detection for both univariate and multivariate time series. This library aims to provide engineers and researchers a one-stop solution...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    UnionML

    UnionML

    Build and deploy machine learning microservices

    Creating ML apps should be simple and frictionless. UnionML is an open-source Python framework built on top of Flyte™, unifying the complex ecosystem of ML tools into a single interface. Combine the tools that you love using a simple, standardized API so you can stop writing so much boilerplate and focus on what matters: the data and the models that learn from them. Fit the rich ecosystem of tools and frameworks into a common protocol for machine learning. Using industry-standard machine...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Karate Club

    Karate Club

    An API Oriented Open-source Python Framework for Unsupervised Learning

    Karate Club is an unsupervised machine learning extension library for NetworkX. Karate Club consists of state-of-the-art methods to do unsupervised learning on graph-structured data. To put it simply it is a Swiss Army knife for small-scale graph mining research. First, it provides network embedding techniques at the node and graph level. Second, it includes a variety of overlapping and non-overlapping community detection methods. Implemented methods cover a wide range of network science...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    d2l-zh

    d2l-zh

    Chinese-language edition of Dive into Deep Learning

    d2l‑zh is the Chinese-language edition of Dive into Deep Learning, an interactive, open‑source deep learning textbook that combines code, math, and explanatory text. It features runnable Jupyter notebooks compatible with multiple frameworks (e.g., PyTorch, MXNet, TensorFlow), comprehensive theoretical analysis, and exercises. Widely adopted in over 70 countries and used by more than 500 universities for teaching deep learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    BEVFormer

    BEVFormer

    Implementation of BEVFormer, a camera-only framework

    3D visual perception tasks, including 3D detection and map segmentation based on multi-camera images, are essential for autonomous driving systems. In this work, we present a new framework termed BEVFormer, which learns unified BEV representations with spatiotemporal transformers to support multiple autonomous driving perception tasks. In a nutshell, BEVFormer exploits both spatial and temporal information by interacting with spatial and temporal space through predefined grid-shaped BEV queries...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Chainer

    Chainer

    A flexible deep learning framework

    Chainer is a Python-based deep learning framework. It provides automatic differentiation APIs based on dynamic computational graphs as well as high-level APIs for neural networks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Deep learning time series forecasting

    Deep learning time series forecasting

    Deep learning PyTorch library for time series forecasting

    Example image Flow Forecast (FF) is an open-source deep learning for time series forecasting framework. It provides all the latest state-of-the-art models (transformers, attention models, GRUs) and cutting-edge concepts with easy-to-understand interpretability metrics, cloud provider integration, and model serving capabilities. Flow Forecast was the first time series framework to feature support for transformer-based models and remains the only true end-to-end deep learning for time series...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Catalyst

    Catalyst

    Accelerated deep learning R&D

    Catalyst is a PyTorch framework for accelerated Deep Learning research and development. It allows you to write compact but full-featured Deep Learning pipelines with just a few lines of code. With Catalyst you get a full set of features including a training loop with metrics, model checkpointing and more, all without the boilerplate. Catalyst is focused on reproducibility, rapid experimentation, and codebase reuse so you can break the cycle of writing another regular train loop and make...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    TensorFlowOnSpark

    TensorFlowOnSpark

    TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters

    By combining salient features from the TensorFlow deep learning framework with Apache Spark and Apache Hadoop, TensorFlowOnSpark enables distributed deep learning on a cluster of GPU and CPU servers. It enables both distributed TensorFlow training and inferencing on Spark clusters, with a goal to minimize the amount of code changes required to run existing TensorFlow programs on a shared grid.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Apache MXNet (incubating)

    Apache MXNet (incubating)

    A flexible and efficient library for deep learning

    Apache MXNet is an open source deep learning framework designed for efficient and flexible research prototyping and production. It contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations. On top of this is a graph optimization layer, overall making MXNet highly efficient yet still portable, lightweight and scalable.
    Downloads: 0 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.