Showing 76 open source projects for "model train design"

View related business solutions
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 1
    YOLOX

    YOLOX

    YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5

    ...Except special cases, we always recommend using our COCO pre-trained weights for initializing the model. As YOLOX is an anchor-free detector with only several hyper-parameters, most of the time good results can be obtained with no changes to the models or training settings.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 2
    igel

    igel

    Machine learning tool that allows you to train and test models

    A delightful machine learning tool that allows you to train/fit, test, and use models without writing code. The goal of the project is to provide machine learning for everyone, both technical and non-technical users. I sometimes needed a tool sometimes, which I could use to fast create a machine learning prototype. Whether to build some proof of concept, create a fast draft model to prove a point or use auto ML.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    TorchGAN

    TorchGAN

    Research Framework for easy and efficient training of GANs

    The torchgan package consists of various generative adversarial networks and utilities that have been found useful in training them. This package provides an easy-to-use API which can be used to train popular GANs as well as develop newer variants. The core idea behind this project is to facilitate easy and rapid generative adversarial model research. TorchGAN is a Pytorch-based framework for designing and developing Generative Adversarial Networks. This framework has been designed to provide building blocks for popular GANs and also to allow customization for cutting-edge research. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Kashgari

    Kashgari

    Kashgari is a production-level NLP Transfer learning framework

    Kashgari is a simple and powerful NLP Transfer learning framework, build a state-of-art model in 5 minutes for named entity recognition (NER), part-of-speech tagging (PoS), and text classification tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • All-in-one security tool helps you prevent ransomware and breaches. Icon
    All-in-one security tool helps you prevent ransomware and breaches.

    SIEM + Detection and Response for IT Teams

    Blumira’s detection and response platform enables faster resolution of threats to help you stop ransomware attacks and prevent data breaches. We surface real threats, providing meaningful findings so you know what to prioritize. With our 3-step rapid response, you can automatically block known threats, use our playbooks for easy remediation, or contact our security team for additional guidance. Our responsive security team helps with onboarding, triage and ongoing consultations to continuously help your organization improve your security coverage.
    Learn More
  • 5
    AliceMind

    AliceMind

    ALIbaba's Collection of Encoder-decoders from MinD

    This repository provides pre-trained encoder-decoder models and its related optimization techniques developed by Alibaba's MinD (Machine IntelligeNce of Damo) Lab. Pre-trained models for natural language understanding (NLU). We extend BERT to a new model, StructBERT, by incorporating language structures into pre-training. Specifically, we pre-train StructBERT with two auxiliary tasks to make the most of the sequential order of words and sentences, which leverage language structures at the word and sentence levels, respectively. Pre-trained models for natural language generation (NLG). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    FARM

    FARM

    Fast & easy transfer learning for NLP

    ...Modular design of language models and prediction heads. Switch between heads or combine them for multitask learning. Full Compatibility with HuggingFace Transformers' models and model hub. Smooth upgrading to newer language models. Integration of custom datasets via Processor class. Powerful experiment tracking & execution.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Semantic Segmentation in PyTorch

    Semantic Segmentation in PyTorch

    Semantic segmentation models, datasets & losses implemented in PyTorch

    Semantic segmentation models, datasets and losses implemented in PyTorch. PyTorch and Torchvision needs to be installed before running the scripts, together with PIL and opencv for data-preprocessing and tqdm for showing the training progress. PyTorch v1.1 is supported (using the new supported tensoboard); can work with earlier versions, but instead of using tensoboard, use tensoboardX. Poly learning rate, where the learning rate is scaled down linearly from the starting value down to zero...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    MLOps Course

    MLOps Course

    Learn how to design, develop, deploy and iterate on ML apps

    ...The repository itself contains configuration, code examples, and links to accompanying lessons hosted on the Made With ML site, which provide detailed narrative explanations and diagrams. Instead of focusing only on model training, the course emphasizes best practices like modular code design, CI/CD, containerization, reproducibility, and responsible ML (including monitoring and feedback loops). This makes it particularly valuable for engineers transitioning from “notebooks and prototypes” to real systems that must be robust, maintainable, and observable in production.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Gluon CV Toolkit

    Gluon CV Toolkit

    Gluon CV Toolkit

    GluonCV provides implementations of state-of-the-art (SOTA) deep learning algorithms in computer vision. It aims to help engineers, researchers, and students quickly prototype products, validate new ideas and learn computer vision. It features training scripts that reproduce SOTA results reported in latest papers, a large set of pre-trained models, carefully designed APIs and easy-to-understand implementations and community support. From fundamental image classification, object detection,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 10
    NLP Architect

    NLP Architect

    A model library for exploring state-of-the-art deep learning

    ...NLP Architect is designed to be flexible for adding new models, neural network components, data handling methods, and for easy training and running models. NLP Architect is a model-oriented library designed to showcase novel and different neural network optimizations. The library contains NLP/NLU-related models per task, different neural network topologies (which are used in models), procedures for simplifying workflows in the library, pre-defined data processors and dataset loaders and misc utilities. The library is designed to be a tool for model development: data pre-processing, build model, train, validate, infer, save or load a model.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    EfficientNet Keras

    EfficientNet Keras

    Implementation of EfficientNet model. Keras and TensorFlow Keras

    This repository contains a Keras (and TensorFlow Keras) reimplementation of EfficientNet, a lightweight convolutional neural network architecture achieving state-of-the-art accuracy with an order of magnitude fewer parameters and FLOPS, on both ImageNet and five other commonly used transfer learning datasets. Convolutional Neural Networks (ConvNets) are commonly developed at a fixed resource budget, and then scaled up for better accuracy if more resources are available. In this paper, we...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Age and Gender Estimation

    Age and Gender Estimation

    Keras implementation of a CNN network for age and gender estimation

    Keras implementation of a CNN network for age and gender estimation. This is a Keras implementation of a CNN for estimating age and gender from a face image [1, 2]. In training, the IMDB-WIKI dataset is used. Because the face images in the UTKFace dataset is tightly cropped (there is no margin around the face region), faces should also be cropped in demo.py if weights trained by the UTKFace dataset is used. Please set the margin argument to 0 for tight cropping. You can evaluate a trained...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    MMdnn

    MMdnn

    Tools to help users inter-operate among deep learning frameworks

    MMdnn is a set of tools to help users inter-operate among different deep learning frameworks. E.g. model conversion and visualization. Convert models between Caffe, Keras, MXNet, Tensorflow, CNTK, PyTorch Onnx and CoreML. MMdnn is a comprehensive and cross-framework tool to convert, visualize and diagnose deep learning (DL) models. The "MM" stands for model management, and "dnn" is the acronym of deep neural network. We implement a universal converter to convert DL models between frameworks, which means you can train a model with one framework and deploy it with another. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Delta ML

    Delta ML

    Deep learning based natural language and speech processing platform

    ...DELTA is mainly implemented using TensorFlow and Python 3. DELTA has been used for developing several state-of-the-art algorithms for publications and delivering real production to serve millions of users. It helps you to train, develop, and deploy NLP and/or speech models. Use configuration files to easily tune parameters and network structures. What you see in training is what you get in serving: all data processing and features extraction are integrated into a model graph. Text classification, named entity recognition, question and answering, text summarization, etc. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    textgenrnn

    textgenrnn

    Easily train your own text-generating neural network

    With textgenrnn you can easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code. A modern neural network architecture that utilizes new techniques as attention-weighting and skip-embedding to accelerate training and improve model quality. Train on and generate text at either the character-level or word-level.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    NLP Best Practices

    NLP Best Practices

    Natural Language Processing Best Practices & Examples

    In recent years, natural language processing (NLP) has seen quick growth in quality and usability, and this has helped to drive business adoption of artificial intelligence (AI) solutions. In the last few years, researchers have been applying newer deep learning methods to NLP. Data scientists started moving from traditional methods to state-of-the-art (SOTA) deep neural network (DNN) algorithms which use language models pretrained on large text corpora. This repository contains examples and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    CrypTen

    CrypTen

    A framework for Privacy Preserving Machine Learning

    ...Designed to make secure computation accessible to machine learning practitioners, CrypTen introduces a CrypTensor object that behaves like a regular PyTorch tensor, allowing users to seamlessly apply automatic differentiation and neural network operations. Its design mirrors PyTorch’s modular and library-based structure, enabling flexible experimentation, debugging, and model development. The framework supports both encryption and decryption of tensors and operations such as addition and multiplication over encrypted values. Although not yet production-ready, CrypTen focuses on advancing real-world secure ML applications, such as training and inference over private datasets, without exposing sensitive data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Image Super-Resolution (ISR)

    Image Super-Resolution (ISR)

    Super-scale your images and run experiments with Residual Dense

    The goal of this project is to upscale and improve the quality of low-resolution images. This project contains Keras implementations of different Residual Dense Networks for Single Image Super-Resolution (ISR) as well as scripts to train these networks using content and adversarial loss components. Docker scripts and Google Colab notebooks are available to carry training and prediction. Also, we provide scripts to facilitate training on the cloud with AWS and Nvidia-docker with only a few commands. When training your own model, start with only PSNR loss (50+ epochs, depending on the dataset) and only then introduce GANS and feature loss. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    MatchZoo

    MatchZoo

    Facilitating the design, comparison and sharing of deep text models

    The goal of MatchZoo is to provide a high-quality codebase for deep text matching research, such as document retrieval, question answering, conversational response ranking, and paraphrase identification. With the unified data processing pipeline, simplified model configuration and automatic hyper-parameters tunning features equipped, MatchZoo is flexible and easy to use. Preprocess your input data in three lines of code, keep track parameters to be passed into the model. Make use of MatchZoo...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Torchreid

    Torchreid

    Deep learning person re-identification in PyTorch

    Torchreid is a library for deep-learning person re-identification, written in PyTorch and developed for our ICCV’19 project, Omni-Scale Feature Learning for Person Re-Identification. In "deep-person-reid/scripts/", we provide a unified interface to train and test a model. See "scripts/main.py" and "scripts/default_config.py" for more details. The folder "configs/" contains some predefined configs which you can use as a starting point. The code will automatically (download and) load the ImageNet pretrained weights. After the training is done, the model will be saved as "log/osnet_x1_0_market1501_softmax_cosinelr/model.pth.tar-250". ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    Texar

    Texar

    Toolkit for Machine Learning, Natural Language Processing

    Texar is a toolkit aiming to support a broad set of machine learning, especially natural language processing and text generation tasks. Texar provides a library of easy-to-use ML modules and functionalities for composing whatever models and algorithms. The tool is designed for both researchers and practitioners for fast prototyping and experimentation. Texar was originally developed and is actively contributed by Petuum and CMU in collaboration with other institutes. A mirror of this...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    PyTorch Natural Language Processing

    PyTorch Natural Language Processing

    Basic Utilities for PyTorch Natural Language Processing (NLP)

    ...PyTorch-NLP comes with pre-trained embeddings, samplers, dataset loaders, metrics, neural network modules and text encoders. It’s open-source software, released under the BSD3 license. With your batch in hand, you can use PyTorch to develop and train your model using gradient descent. For example, check out this example code for training on the Stanford Natural Language Inference (SNLI) Corpus. Now you've setup your pipeline, you may want to ensure that some functions run deterministically. Wrap any code that's random, with fork_rng and you'll be good to go. Now that you've computed your vocabulary, you may want to make use of pre-trained word vectors to set your embeddings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    DCVGAN

    DCVGAN

    DCVGAN: Depth Conditional Video Generation, ICIP 2019.

    This paper proposes a new GAN architecture for video generation with depth videos and color videos. The proposed model explicitly uses the information of depth in a video sequence as additional information for a GAN-based video generation scheme to make the model understands scene dynamics more accurately. The model uses pairs of color video and depth video for training and generates a video using the two steps. Generate the depth video to model the scene dynamics based on the geometrical...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    CakeChat

    CakeChat

    CakeChat: Emotional Generative Dialog System

    CakeChat is a backend for chatbots that are able to express emotions via conversations. The code is flexible and allows to condition model's responses by an arbitrary categorical variable. For example, you can train your own persona-based neural conversational model or create an emotional chatting machine. Hierarchical Recurrent Encoder-Decoder (HRED) architecture for handling deep dialog context. Multilayer RNN with GRU cells. The first layer of the utterance-level encoder is always bidirectional. By default, CuDNNGRU implementation is used for ~25% acceleration during inference. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    automl-gs

    automl-gs

    Provide an input CSV and a target field to predict, generate a model

    Give an input CSV file and a target field you want to predict to automl-gs, and get a trained high-performing machine learning or deep learning model plus native Python code pipelines allowing you to integrate that model into any prediction workflow. No black box: you can see exactly how the data is processed, and how the model is constructed, and you can make tweaks as necessary. automl-gs is an AutoML tool which, unlike Microsoft's NNI, Uber's Ludwig, and TPOT, offers a zero code/model...
    Downloads: 0 This Week
    Last Update:
    See Project