Showing 186 open source projects for "library python"

View related business solutions
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 1
    MiniSom

    MiniSom

    MiniSom is a minimalistic implementation of the Self Organizing Maps

    MiniSom is a minimalistic and Numpy-based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial Neural Network able to convert complex, nonlinear statistical relationships between high-dimensional data items into simple geometric relationships on a low-dimensional display. Minisom is designed to allow researchers to easily build on top of it and to give students the ability to quickly grasp its details. The project initially aimed for a minimalistic implementation of...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 2
    Optax

    Optax

    Optax is a gradient processing and optimization library for JAX

    Optax is a gradient processing and optimization library for JAX. It is designed to facilitate research by providing building blocks that can be recombined in custom ways in order to optimize parametric models such as, but not limited to, deep neural networks. We favor focusing on small composable building blocks that can be effectively combined into custom solutions. Others may build upon these basic components in more complicated abstractions. Whenever reasonable, implementations prioritize...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Arize Phoenix

    Arize Phoenix

    Uncover insights, surface problems, monitor, and fine tune your LLM

    Phoenix provides ML insights at lightning speed with zero-config observability for model drift, performance, and data quality. Phoenix is an Open Source ML Observability library designed for the Notebook. The toolset is designed to ingest model inference data for LLMs, CV, NLP and tabular datasets. It allows Data Scientists to quickly visualize their model data, monitor performance, track down issues & insights, and easily export to improve. Deep Learning Models (CV, LLM, and Generative)...
    Downloads: 13 This Week
    Last Update:
    See Project
  • 4
    Audiomentations

    Audiomentations

    A Python library for audio data augmentation

    A Python library for audio data augmentation. Inspired by albumentations. Useful for deep learning. Runs on CPU. Supports mono audio and multichannel audio. Can be integrated in training pipelines in e.g. Tensorflow/Keras or Pytorch. Has helped people get world-class results in Kaggle competitions. Is used by companies making next-generation audio products.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Build and execute better incentive plans with our simple, easy-to-use platform. Icon
    Build and execute better incentive plans with our simple, easy-to-use platform.

    For companies with sales teams

    incentX is a feature-rich, cloud-based platform that provides all the tools needed to plan, manage, and settle your incentives program—including commissions, rebates, royalties, bill-backs, and chargebacks. best of all, it integrates with your existing Accounting / ERPs for a seamless, end-to-end experience.
    Learn More
  • 5
    TorchRec

    TorchRec

    Pytorch domain library for recommendation systems

    TorchRec is a PyTorch domain library built to provide common sparsity & parallelism primitives needed for large-scale recommender systems (RecSys). It allows authors to train models with large embedding tables sharded across many GPUs. Parallelism primitives that enable easy authoring of large, performant multi-device/multi-node models using hybrid data-parallelism/model-parallelism. The TorchRec sharder can shard embedding tables with different sharding strategies including data-parallel,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    PennyLane

    PennyLane

    A cross-platform Python library for differentiable programming

    A cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural network. Built-in automatic differentiation of quantum circuits, using the near-term quantum devices directly. You can combine multiple quantum devices with classical processing arbitrarily! Support for hybrid quantum and classical models, and compatible with existing machine learning libraries.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    TorchAudio

    TorchAudio

    Data manipulation and transformation for audio signal processing

    The aim of torchaudio is to apply PyTorch to the audio domain. By supporting PyTorch, torchaudio follows the same philosophy of providing strong GPU acceleration, having a focus on trainable features through the autograd system, and having consistent style (tensor names and dimension names). Therefore, it is primarily a machine learning library and not a general signal processing library. The benefits of PyTorch can be seen in torchaudio through having all the computations be through PyTorch...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Kornia

    Kornia

    Open Source Differentiable Computer Vision Library

    Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer vision problems. At its core, the package uses PyTorch as its main backend both for efficiency and to take advantage of the reverse-mode auto-differentiation to define and compute the gradient of complex functions. Inspired by existing packages, this library is composed by a subset of packages containing operators that can be inserted within...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    PyTorch Ignite

    PyTorch Ignite

    Library to help with training and evaluating neural networks

    High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently. Less code than pure PyTorch while ensuring maximum control and simplicity. Library approach and no program's control inversion. Use ignite where and when you need. Extensible API for metrics, experiment managers, and other components. The cool thing with handlers is that they offer unparalleled flexibility (compared to, for example, callbacks). Handlers can be any function: e.g....
    Downloads: 0 This Week
    Last Update:
    See Project
  • anny is an all-in-one platform for managing hybrid workplaces and shared resources. Icon
    anny is an all-in-one platform for managing hybrid workplaces and shared resources.

    For Businesses looking for a flexible solution for internal and external bookings

    Enable your employees to easily book desks, meeting rooms, parking spots, equipment, and more – all in one place. With flexible rules and group permissions, you stay in full control of who can access what.
    Learn More
  • 10
    Fairlearn

    Fairlearn

    A Python package to assess and improve fairness of ML models

    ...In each use case, both societal and technical aspects shape who might be harmed by AI systems and how. There are many complex sources of unfairness and a variety of societal and technical processes for mitigation, not just the mitigation algorithms in our library.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Foolbox

    Foolbox

    Python toolbox to create adversarial examples

    ...Foolbox provides a large collection of state-of-the-art gradient-based and decision-based adversarial attacks. Catch bugs before running your code thanks to extensive type annotations in Foolbox. Foolbox is a Python library that lets you easily run adversarial attacks against machine learning models like deep neural networks. It is built on top of EagerPy and works natively with models in PyTorch, TensorFlow, and JAX.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    FLAML

    FLAML

    A fast library for AutoML and tuning

    FLAML is a lightweight Python library that finds accurate machine learning models automatically, efficiently and economically. It frees users from selecting learners and hyperparameters for each learner. For common machine learning tasks like classification and regression, it quickly finds quality models for user-provided data with low computational resources.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Homemade Machine Learning

    Homemade Machine Learning

    Python examples of popular machine learning algorithms

    ...The purpose is pedagogical: you’ll see linear regression, logistic regression, k-means clustering, neural nets, decision trees, etc., built in Python using fundamentals like NumPy and Matplotlib, not hidden behind API calls. It is well suited for learners who want to move beyond library usage to understand how algorithms operate internally—how cost functions, gradients, updates and predictions work.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Ray

    Ray

    A unified framework for scalable computing

    ...Accelerate your hyperparameter search workloads with Ray Tune. Find the best model and reduce training costs by using the latest optimization algorithms. Deploy your machine learning models at scale with Ray Serve, a Python-first and framework agnostic model serving framework. Scale reinforcement learning (RL) with RLlib, a framework-agnostic RL library that ships with 30+ cutting-edge RL algorithms including A3C, DQN, and PPO. Easily build out scalable, distributed systems in Python with simple and composable primitives in Ray Core.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    Shapash

    Shapash

    Explainability and Interpretability to Develop Reliable ML models

    Shapash is a Python library dedicated to the interpretability of Data Science models. It provides several types of visualization that display explicit labels that everyone can understand. Data Scientists can more easily understand their models, share their results and easily document their projects in an HTML report. End users can understand the suggestion proposed by a model using a summary of the most influential criteria.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Hummingbird

    Hummingbird

    Hummingbird compiles trained ML models into tensor computation

    Hummingbird is a library for compiling trained traditional ML models into tensor computations. Hummingbird allows users to seamlessly leverage neural network frameworks (such as PyTorch) to accelerate traditional ML models. Thanks to Hummingbird, users can benefit from (1) all the current and future optimizations implemented in neural network frameworks; (2) native hardware acceleration; (3) having a unique platform to support both traditional and neural network models; and having all of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Orion

    Orion

    A machine learning library for detecting anomalies in signals

    Orion is a machine-learning library built for unsupervised time series anomaly detection. Such signals are generated by a wide variety of systems, few examples include telemetry data generated by satellites, signals from wind turbines, and even stock market price tickers. We built this to provide one place where users can find the latest and greatest in machine learning and deep learning world including our own innovations. Abstract away from the users the nitty-gritty about preprocessing,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    DeepXDE

    DeepXDE

    A library for scientific machine learning & physics-informed learning

    DeepXDE is a library for scientific machine learning and physics-informed learning. DeepXDE includes the following algorithms. Physics-informed neural network (PINN). Solving different problems. Solving forward/inverse ordinary/partial differential equations (ODEs/PDEs) [SIAM Rev.] Solving forward/inverse integro-differential equations (IDEs) [SIAM Rev.] fPINN: solving forward/inverse fractional PDEs (fPDEs) [SIAM J. Sci. Comput.] NN-arbitrary polynomial chaos (NN-aPC): solving...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    TensorFlow Probability

    TensorFlow Probability

    Probabilistic reasoning and statistical analysis in TensorFlow

    TensorFlow Probability is a library for probabilistic reasoning and statistical analysis. TensorFlow Probability (TFP) is a Python library built on TensorFlow that makes it easy to combine probabilistic models and deep learning on modern hardware (TPU, GPU). It's for data scientists, statisticians, ML researchers, and practitioners who want to encode domain knowledge to understand data and make predictions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    DeepSeed

    DeepSeed

    Deep learning optimization library making distributed training easy

    DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. DeepSpeed delivers extreme-scale model training for everyone, from data scientists training on massive supercomputers to those training on low-end clusters or even on a single GPU. Using current generation of GPU clusters with hundreds of devices, 3D parallelism of DeepSpeed can efficiently train deep learning models with trillions of parameters. With just a single GPU,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    sktime

    sktime

    A unified framework for machine learning with time series

    sktime is a library for time series analysis in Python. It provides a unified interface for multiple time series learning tasks. Currently, this includes time series classification, regression, clustering, annotation, and forecasting. It comes with time series algorithms and scikit-learn compatible tools to build, tune and validate time series models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Avalanche

    Avalanche

    End-to-End Library for Continual Learning based on PyTorch

    Avalanche is an end-to-end Continual Learning library based on Pytorch, born within ContinualAI with the unique goal of providing a shared and collaborative open-source (MIT licensed) codebase for fast prototyping, training and reproducible evaluation of continual learning algorithms. Avalanche can help Continual Learning researchers in several ways. This module maintains a uniform API for data handling: mostly generating a stream of data from one or more datasets. It contains all the major...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    plexe

    plexe

    Build a machine learning model from a prompt

    ...It aims to be production-minded: models can be exported, versioned, and deployed, with reports to explain performance and limitations. The project supports both a Python library and a managed cloud option, meeting teams wherever they prefer to run workloads. The overall goal is to compress the path from idea to usable model while keeping humans in the loop for review and adjustment.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    flair

    flair

    A very simple framework for state-of-the-art NLP

    A very simple framework for state-of-the-art NLP. Developed by Humboldt University of Berlin and friends. A powerful NLP library. Flair allows you to apply our state-of-the-art natural language processing (NLP) models to your text, such as named entity recognition (NER), sentiment analysis, part-of-speech tagging (PoS), special support for biomedical texts, sense disambiguation and classification, with support for a rapidly growing number of languages. A text embedding library. Flair has...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Sonnet

    Sonnet

    TensorFlow-based neural network library

    Sonnet is a neural network library built on top of TensorFlow designed to provide simple, composable abstractions for machine learning research. Sonnet can be used to build neural networks for various purposes, including different types of learning. Sonnet’s programming model revolves around a single concept: modules. These modules can hold references to parameters, other modules and methods that apply some function on the user input. There are a number of predefined modules that already...
    Downloads: 0 This Week
    Last Update:
    See Project