Showing 71 open source projects for "gpu"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • AestheticsPro Medical Spa Software Icon
    AestheticsPro Medical Spa Software

    Our new software release will dramatically improve your medspa business performance while enhancing the customer experience

    AestheticsPro is the most complete Aesthetics Software on the market today. HIPAA Cloud Compliant with electronic charting, integrated POS, targeted marketing and results driven reporting; AestheticsPro delivers the tools you need to manage your medical spa business. It is our mission To Provide an All-in-One Cutting Edge Software to the Aesthetics Industry.
    Learn More
  • 1
    Guild AI

    Guild AI

    Experiment tracking, ML developer tools

    Guild AI is an open-source experiment tracking toolkit designed to bring systematic control to machine learning workflows, enabling users to build better models faster. It automatically captures every detail of training runs as unique experiments, facilitating comprehensive tracking and analysis. Users can compare and analyze runs to deepen their understanding and incrementally improve models. Guild AI simplifies hyperparameter tuning by applying state-of-the-art algorithms through...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    TensorFlowOnSpark

    TensorFlowOnSpark

    TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters

    By combining salient features from the TensorFlow deep learning framework with Apache Spark and Apache Hadoop, TensorFlowOnSpark enables distributed deep learning on a cluster of GPU and CPU servers. It enables both distributed TensorFlow training and inferencing on Spark clusters, with a goal to minimize the amount of code changes required to run existing TensorFlow programs on a shared grid.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Hugging Face Transformer

    Hugging Face Transformer

    CPU/GPU inference server for Hugging Face transformer models

    ...Then, if you spend some time, you can build something over ONNX Runtime and Triton inference server. You will usually get from 2X to 4X faster inference compared to vanilla Pytorch. It's cool! However, if you want the best in class performances on GPU, there is only a single possible combination: Nvidia TensorRT and Triton. You will usually get 5X faster inference compared to vanilla Pytorch.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    Tez

    Tez

    Tez is a super-simple and lightweight Trainer for PyTorch

    ...This is a simple, to-the-point, library to make your PyTorch training easy. This library is in early-stage currently! So, there might be breaking changes. Currently, tez supports cpu, single gpu and multi-gpu & tpu training. More coming soon! Using tez is super-easy. We don't want you to be far away from pytorch. So, you do everything on your own and just use tez to make a few things simpler.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 5
    DeepMosaics

    DeepMosaics

    Automatically remove the mosaics in images and videos, or add mosaics

    ...This project is based on "semantic segmentation" and "Image-to-Image Translation". You can either run DeepMosaics via a pre-built binary package, or from source. Run time depends on the computer's performance (GPU version has better performance but requires CUDA to be installed). Different pre-trained models are suitable for different effects.[Introduction to pre-trained models].
    Downloads: 78 This Week
    Last Update:
    See Project
  • 6
    Minkowski Engine

    Minkowski Engine

    Auto-diff neural network library for high-dimensional sparse tensors

    The Minkowski Engine is an auto-differentiation library for sparse tensors. It supports all standard neural network layers such as convolution, pooling, unspooling, and broadcasting operations for sparse tensors. The Minkowski Engine supports various functions that can be built on a sparse tensor. We list a few popular network architectures and applications here. To run the examples, please install the package and run the command in the package root directory. Compressing a neural network to...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    TensorLayer

    TensorLayer

    Deep learning and reinforcement learning library for scientists

    ...This project can also be found at OpenI and Gitee. 3.0.0 has been pre-released, the current version supports TensorFlow, MindSpore and PaddlePaddle (partial) as the backends, allowing users to run the code on different hardware like Nvidia-GPU and Huawei-Ascend. In the future, it will support TensorFlow, MindSpore, PaddlePaddle, PyTorch and other backends. TensorLayer has a high-level layer/model abstraction which is effortless to learn. You can learn how deep learning can benefit your AI tasks in minutes through the massive examples.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    TFLearn

    TFLearn

    Deep learning library featuring a higher-level API for TensorFlow

    ...Powerful helper functions to train any TensorFlow graph, with support of multiple inputs, outputs, and optimizers. Easy and beautiful graph visualization, with details about weights, gradients, activations, and more. Effortless device placement for using multiple CPU/GPU. The high-level API currently supports the most of the recent deep learning models, such as Convolutions, LSTM, BiRNN, BatchNorm, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Tensor2Tensor

    Tensor2Tensor

    Library of deep learning models and datasets

    Deep Learning (DL) has enabled the rapid advancement of many useful technologies, such as machine translation, speech recognition and object detection. In the research community, one can find code open-sourced by the authors to help in replicating their results and further advancing deep learning. However, most of these DL systems use unique setups that require significant engineering effort and may only work for a specific problem or architecture, making it hard to run new experiments and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Inventors: Validate Your Idea, Protect It and Gain Market Advantages Icon
    Inventors: Validate Your Idea, Protect It and Gain Market Advantages

    SenseIP is ideal for individual inventors, startups, and businesses

    senseIP is an AI innovation platform for inventors, automating any aspect of IP from the moment you have an idea. You can have it researched for uniqueness and protected; quickly and effortlessly, without expensive attorneys. Built for business success while securing your competitive edge.
    Learn More
  • 10
    BytePS

    BytePS

    A high performance and generic framework for distributed DNN training

    ...We show our experiment on BERT-large training, which is based on GluonNLP toolkit. The model uses mixed precision. We use Tesla V100 32GB GPUs and set batch size equal to 64 per GPU. Each machine has 8 V100 GPUs (32GB memory) with NVLink-enabled. Machines are inter-connected with 100 Gbps RDMA network. This is the same hardware setup you can get on AWS.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    textgenrnn

    textgenrnn

    Easily train your own text-generating neural network

    ...Train on and generate text at either the character-level or word-level. Configure RNN size, the number of RNN layers, and whether to use bidirectional RNNs. Train on any generic input text file, including large files. Train models on a GPU and then use them to generate text with a CPU. Utilize a powerful CuDNN implementation of RNNs when trained on the GPU, which massively speeds up training time as opposed to typical LSTM implementations. Train the model using contextual labels, allowing it to learn faster and produce better results in some cases.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    CrypTen

    CrypTen

    A framework for Privacy Preserving Machine Learning

    CrypTen is a research framework developed by Facebook Research for privacy-preserving machine learning built directly on top of PyTorch. It provides a secure and intuitive environment for performing computations on encrypted data using Secure Multiparty Computation (SMPC). Designed to make secure computation accessible to machine learning practitioners, CrypTen introduces a CrypTensor object that behaves like a regular PyTorch tensor, allowing users to seamlessly apply automatic...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Torchreid

    Torchreid

    Deep learning person re-identification in PyTorch

    Torchreid is a library for deep-learning person re-identification, written in PyTorch and developed for our ICCV’19 project, Omni-Scale Feature Learning for Person Re-Identification. In "deep-person-reid/scripts/", we provide a unified interface to train and test a model. See "scripts/main.py" and "scripts/default_config.py" for more details. The folder "configs/" contains some predefined configs which you can use as a starting point. The code will automatically (download and) load the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    NiftyNet

    NiftyNet

    An open-source convolutional neural networks platform for research

    An open-source convolutional neural networks platform for medical image analysis and image-guided therapy. NiftyNet is a TensorFlow-based open-source convolutional neural networks (CNNs) platform for research in medical image analysis and image-guided therapy. NiftyNet’s modular structure is designed for sharing networks and pre-trained models. Using this modular structure you can get started with established pre-trained networks using built-in tools. Adapt existing networks to your imaging...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Tensorpack

    Tensorpack

    A Neural Net Training Interface on TensorFlow, with focus on speed

    ...On common CNNs, it runs training 1.2~5x faster than the equivalent Keras code. Your training can probably gets faster if written with Tensorpack. Scalable data-parallel multi-GPU / distributed training strategy is off-the-shelf to use. Squeeze the best data loading performance of Python with tensorpack.dataflow. Symbolic programming (e.g. tf.data) does not offer the data processing flexibility needed in research. Tensorpack squeezes the most performance out of pure Python with various auto parallelization strategies. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    DIGITS

    DIGITS

    Deep Learning GPU training system

    The NVIDIA Deep Learning GPU Training System (DIGITS) puts the power of deep learning into the hands of engineers and data scientists. DIGITS can be used to rapidly train the highly accurate deep neural network (DNNs) for image classification, segmentation and object detection tasks. DIGITS simplifies common deep learning tasks such as managing data, designing and training neural networks on multi-GPU systems, monitoring performance in real-time with advanced visualizations, and selecting the best performing model from the results browser for deployment. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17

    Face Recognition

    World's simplest facial recognition api for Python & the command line

    Face Recognition is the world's simplest face recognition library. It allows you to recognize and manipulate faces from Python or from the command line using dlib's (a C++ toolkit containing machine learning algorithms and tools) state-of-the-art face recognition built with deep learning. Face Recognition is highly accurate and is able to do a number of things. It can find faces in pictures, manipulate facial features in pictures, identify faces in pictures, and do face recognition on a...
    Downloads: 10 This Week
    Last Update:
    See Project
  • 18
    PyTorch Book

    PyTorch Book

    PyTorch tutorials and fun projects including neural talk

    ...The current version of the code is based on pytorch 1.0.1, if you want to use an older version please git checkout v0.4or git checkout v0.3. Legacy code has better python2/python3 compatibility, CPU/GPU compatibility test. The new version of the code has not been fully tested, it has been tested under GPU and python3. But in theory there shouldn't be too many problems on python2 and CPU. The basic part (the first five chapters) explains the content of PyTorch. This part introduces the main modules in PyTorch and some tools commonly used in deep learning. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Intel neon

    Intel neon

    Intel® Nervana™ reference deep learning framework

    ...We want to highlight that neon v2.0.0+ has been optimized for much better performance on CPUs by enabling Intel Math Kernel Library (MKL). The DNN (Deep Neural Networks) component of MKL that is used by neon is provided free of charge and downloaded automatically as part of the neon installation. The gpu backend is selected by default, so the above command is equivalent to if a compatible GPU resource is found on the system. The Intel Math Kernel Library takes advantages of the parallelization and vectorization capabilities of Intel Xeon and Xeon Phi systems. When hyperthreading is enabled on the system, we recommend the following KMP_AFFINITY setting to make sure parallel threads are 1:1 mapped to the available physical cores.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Deepo

    Deepo

    Set up deep learning environment in a single command line

    ...This should work and enables Deepo to use the GPU from inside a docker container.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Deep Learning with Keras and Tensorflow

    Deep Learning with Keras and Tensorflow

    Introduction to Deep Neural Networks with Keras and Tensorflow

    Introduction to Deep Neural Networks with Keras and Tensorflow. To date tensorflow comes in two different packages, namely tensorflow and tensorflow-gpu, whether you want to install the framework with CPU-only or GPU support, respectively. NVIDIA Drivers and CuDNN must be installed and configured before hand. Please refer to the official Tensorflow documentation for further details. Since version 0.9 Theano introduced the libgpuarray in the stable release (it was previously only available in the development version). ...
    Downloads: 0 This Week
    Last Update:
    See Project