Showing 39 open source projects for "numerical python files"

View related business solutions
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Opyrator

    Opyrator

    Turns your machine learning code into microservices with web API

    Instantly turn your Python functions into production-ready microservices. Deploy and access your services via HTTP API or interactive UI. Seamlessly export your services into portable, shareable, and executable files or Docker images. Opyrator builds on open standards - OpenAPI, JSON Schema, and Python type hints - and is powered by FastAPI, Streamlit, and Pydantic.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Keepsake

    Keepsake

    Version control for machine learning

    Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Google Cloud Storage. You can get the data back out using the command-line interface or a notebook.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Delta ML

    Delta ML

    Deep learning based natural language and speech processing platform

    ...DELTA aims to provide easy and fast experiences for using, deploying, and developing natural language processing and speech models for both academia and industry use cases. DELTA is mainly implemented using TensorFlow and Python 3. DELTA has been used for developing several state-of-the-art algorithms for publications and delivering real production to serve millions of users. It helps you to train, develop, and deploy NLP and/or speech models. Use configuration files to easily tune parameters and network structures. What you see in training is what you get in serving: all data processing and features extraction are integrated into a model graph. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Forecasting Best Practices

    Forecasting Best Practices

    Time Series Forecasting Best Practices & Examples

    ...Rather than creating implementations from scratch, we draw from existing state-of-the-art libraries and build additional utilities around processing and featuring the data, optimizing and evaluating models, and scaling up to the cloud. The examples and best practices are provided as Python Jupyter notebooks and R markdown files and a library of utility functions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 5
    DeepLearning

    DeepLearning

    Deep Learning (Flower Book) mathematical derivation

    " Deep Learning " is the only comprehensive book in the field of deep learning. The full name is also called the Deep Learning AI Bible (Deep Learning) . It is edited by three world-renowned experts, Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Includes linear algebra, probability theory, information theory, numerical optimization, and related content in machine learning. At the same time, it also introduces deep learning techniques used by practitioners in the industry, including...
    Downloads: 8 This Week
    Last Update:
    See Project
  • 6
    textgenrnn

    textgenrnn

    Easily train your own text-generating neural network

    With textgenrnn you can easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code. A modern neural network architecture that utilizes new techniques as attention-weighting and skip-embedding to accelerate training and improve model quality. Train on and generate text at either the character-level or word-level. Configure RNN size, the number of RNN layers, and whether to use bidirectional RNNs. Train on any generic input text...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Dive-into-DL-TensorFlow2.0

    Dive-into-DL-TensorFlow2.0

    Dive into Deep Learning

    This project changes the MXNet code implementation in the original book "Learning Deep Learning by Hand" to TensorFlow2 implementation. After consulting Mr. Li Mu by the tutor of archersama , the implementation of this project has been agreed by Mr. Li Mu. Original authors: Aston Zhang, Li Mu, Zachary C. Lipton, Alexander J. Smola and other community contributors. There are some differences between the Chinese and English versions of this book . This project mainly focuses on TensorFlow2...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8

    TensorImage

    Image classification library for easily training and deploying models

    (Visit our github repository at https://github.com/TensorImage/tensorimage for more information) TensorImage is and open source package for image classification. It has a wide range of data augmentation operations that can be performed over training data to prevent overfitting and increase testing accuracy. TensorImage is easy to use and manage as all files, trained models and data are organized within a workspace directory, which you can change at any time in the configuration file,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    mAP

    mAP

    Evaluates the performance of your neural net for object recognition

    In practice, a higher mAP value indicates a better performance of your neural net, given your ground truth and set of classes. The performance of your neural net will be judged using the mAP criteria defined in the PASCAL VOC 2012 competition. We simply adapted the official Matlab code into Python (in our tests they both give the same results). First, your neural net detection-results are sorted by decreasing confidence and are assigned to ground-truth objects. We have "a match" when they...
    Downloads: 0 This Week
    Last Update:
    See Project
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 10
    Image classification models for Keras

    Image classification models for Keras

    Keras code and weights files for popular deep learning models

    All architectures are compatible with both TensorFlow and Theano, and upon instantiation the models will be built according to the image dimension ordering set in your Keras configuration file at ~/.keras/keras.json. For instance, if you have set image_dim_ordering=tf, then any model loaded from this repository will get built according to the TensorFlow dimension ordering convention, "Width-Height-Depth". Pre-trained weights can be automatically loaded upon instantiation (weights='imagenet'...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    DSTK - DataScience ToolKit

    DSTK - DataScience ToolKit

    DSTK - DataScience ToolKit for All of Us

    DSTK - DataScience ToolKit is an opensource free software for statistical analysis, data visualization, text analysis, and predictive analytics. Newer version and smaller file size can be found at: https://sourceforge.net/projects/dstk3/ It is designed to be straight forward and easy to use, and familar to SPSS user. While JASP offers more statistical features, DSTK tends to be a broad solution workbench, including text analysis and predictive analytics features. Of course you may specify...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12

    mullpy

    Multilabel-learning library built on python

    Mullpy is a machine-learning library that mainly aim to solve multi-label problems. It is classifier independent, has many ensemble capabilities (diversity methods like bagging, random subspaces, etc.) and automated results presentation (Excel, images as ROC or class-separated info, etc.). It is fully configurable. At the moment supports Neural Networks and classifiers defined in files. It is working on python3.3.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13

    PyVocabularyTree

    A vocabulary tree for image classification using OpenCV

    A vocabulary tree for image classification have been designed to be integrated in mobile robotic applications. It is a learning schema based on decission trees, bags of features and inverted files. The design provides training and optimization parameters that have been characterized using several detectors and descriptors for several input datasets. Evaluation tests performed on public image databases allow to compare obtained results with previously published literature. All the tools...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    pySPACE

    pySPACE

    Signal Processing and Classification Environment in Python using YAML

    pySPACE is a modular software for processing of large data streams that has been specifically designed to enable distributed execution and empirical evaluation of signal processing chains. Various signal processing algorithms (so called nodes) are available within the software, from finite impulse response filters over data-dependent spatial filters (e.g. CSP, xDAWN) to established classifiers (e.g. SVM, LDA). pySPACE incorporates the concept of node and node chains of the MDP framework. Due...
    Downloads: 0 This Week
    Last Update:
    See Project