Showing 71 open source projects for "multi%20seat"

View related business solutions
  • Retool your internal operations Icon
    Retool your internal operations

    Generate secure, production-grade apps that connect to your business data. Not just prototypes, but tools your team can actually deploy.

    Build internal software that meets enterprise security standards without waiting on engineering resources. Retool connects to your databases, APIs, and data sources while maintaining the permissions and controls you need. Create custom dashboards, admin tools, and workflows from natural language prompts—all deployed in your cloud with security baked in. Stop duct-taping operations together, start building in Retool.
    Build an app in Retool
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 1
    PyG

    PyG

    Graph Neural Network Library for PyTorch

    ...It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of easy-to-use mini-batch loaders for operating on many small and single giant graphs, multi GPU-support, DataPipe support, distributed graph learning via Quiver, a large number of common benchmark datasets (based on simple interfaces to create your own), the GraphGym experiment manager, and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds. All it takes is 10-20 lines of code to get started with training a GNN model (see the next section for a quick tour).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    NVIDIA FLARE

    NVIDIA FLARE

    NVIDIA Federated Learning Application Runtime Environment

    NVIDIA Federated Learning Application Runtime Environment NVIDIA FLARE is a domain-agnostic, open-source, extensible SDK that allows researchers and data scientists to adapt existing ML/DL workflows(PyTorch, TensorFlow, Scikit-learn, XGBoost etc.) to a federated paradigm. It enables platform developers to build a secure, privacy-preserving offering for a distributed multi-party collaboration. NVIDIA FLARE is built on a componentized architecture that allows you to take federated learning workloads from research and simulation to real-world production deployment.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Petastorm

    Petastorm

    Petastorm library enables single machine or distributed training

    Petastorm library enables single machine or distributed training and evaluation of deep learning models from datasets in Apache Parquet format. It supports ML frameworks such as Tensorflow, Pytorch, and PySpark and can be used from pure Python code. Petastorm is an open-source data access library developed at Uber ATG. This library enables single machine or distributed training and evaluation of deep learning models directly from datasets in Apache Parquet format. Petastorm supports popular...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    DGL

    DGL

    Python package built to ease deep learning on graph

    Build your models with PyTorch, TensorFlow or Apache MXNet. Fast and memory-efficient message passing primitives for training Graph Neural Networks. Scale to giant graphs via multi-GPU acceleration and distributed training infrastructure. DGL empowers a variety of domain-specific projects including DGL-KE for learning large-scale knowledge graph embeddings, DGL-LifeSci for bioinformatics and cheminformatics, and many others. We are keen to bringing graphs closer to deep learning researchers. We want to make it easy to implement graph neural networks model family. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 5
    Lightly

    Lightly

    A python library for self-supervised learning on images

    A python library for self-supervised learning on images. We, at Lightly, are passionate engineers who want to make deep learning more efficient. That's why - together with our community - we want to popularize the use of self-supervised methods to understand and curate raw image data. Our solution can be applied before any data annotation step and the learned representations can be used to visualize and analyze datasets. This allows selecting the best core set of samples for model training...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Jina

    Jina

    Build cross-modal and multimodal applications on the cloud

    Jina is a framework that empowers anyone to build cross-modal and multi-modal applications on the cloud. It uplifts a PoC into a production-ready service. Jina handles the infrastructure complexity, making advanced solution engineering and cloud-native technologies accessible to every developer. Build applications that deliver fresh insights from multiple data types such as text, image, audio, video, 3D mesh, PDF with Jina AI’s DocArray.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Robyn

    Robyn

    Experimental, AI/ML-powered and open sourced Marketing Mix Modeling

    Robyn is an open-source, AI/ML-powered Marketing Mix Modeling (MMM) toolkit developed by Meta Marketing Science under the “facebookexperimental” GitHub umbrella. Its goal is to democratize rigorous MMM: what traditionally required expert statisticians and expensive consulting becomes accessible to any company with data. Robyn takes in historical data (spends on different marketing channels, conversions, or revenue, and optional context or organic-media variables) and uses a combination of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    SSD in PyTorch 1.0

    SSD in PyTorch 1.0

    High quality, fast, modular reference implementation of SSD in PyTorch

    ...The implementation is heavily influenced by the projects ssd.pytorch, pytorch-ssd and maskrcnn-benchmark. This repository aims to be the code base for research based on SSD. Multi-GPU training and inference: We use DistributedDataParallel, you can train or test with arbitrary GPU(s), the training schema will change accordingly. Add your own modules without pain. We abstract backbone, Detector, BoxHead, BoxPredictor, etc. You can replace every component with your own code without changing the code base. For example, You can add EfficientNet as the backbone, just add efficient_net.py (ALREADY ADDED) and register it, specific it in the config file, It's done! ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    CLIP-as-service

    CLIP-as-service

    Embed images and sentences into fixed-length vectors

    ...Easily switch between gRPC, HTTP, WebSocket protocols with TLS and compression. Smooth integration with neural search ecosystem including Jina and DocArray. Build cross-modal and multi-modal solutions in no time.
    Downloads: 0 This Week
    Last Update:
    See Project
  • G-P - Global EOR Solution Icon
    G-P - Global EOR Solution

    Companies searching for an Employer of Record solution to mitigate risk and manage compliance, taxes, benefits, and payroll anywhere in the world

    With G-P's industry-leading Employer of Record (EOR) and Contractor solutions, you can hire, onboard and manage teams in 180+ countries — quickly and compliantly — without setting up entities.
    Learn More
  • 10
    SageMaker Inference Toolkit

    SageMaker Inference Toolkit

    Serve machine learning models within a Docker container

    ...The SageMaker Inference Toolkit implements a model serving stack and can be easily added to any Docker container, making it deployable to SageMaker. This library's serving stack is built on Multi Model Server, and it can serve your own models or those you trained on SageMaker using machine learning frameworks with native SageMaker support.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    FEDML Open Source

    FEDML Open Source

    The unified and scalable ML library for large-scale training

    ...TensorOpera AI is the next-gen cloud service for LLMs & Generative AI. It helps developers to launch complex model training, deployment, and federated learning anywhere on decentralized GPUs, multi-clouds, edge servers, and smartphones, easily, economically, and securely. Highly integrated with TensorOpera open source library, TensorOpera AI provides holistic support of three interconnected AI infrastructure layers: user-friendly MLOps, a well-managed scheduler, and high-performance ML libraries for running any AI jobs across GPU Clouds. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Implicit

    Implicit

    Fast Python collaborative filtering for implicit feedback datasets

    This project provides fast Python implementations of several different popular recommendation algorithms for implicit feedback datasets. All models have multi-threaded training routines, using Cython and OpenMP to fit the models in parallel among all available CPU cores. In addition, the ALS and BPR models both have custom CUDA kernels - enabling fitting on compatible GPU’s. This library also supports using approximate nearest neighbour libraries such as Annoy, NMSLIB and Faiss for speeding up making recommendations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    DeepKE

    DeepKE

    An Open Toolkit for Knowledge Graph Extraction and Construction

    Supporting cnSchema, standard supervised setting, low-resource setting, document-level setting and multi-modal setting for knowledge base population. DeepKE is a knowledge extraction toolkit supporting cnSchema, standard supervised, low-resource, and document-level scenarios for entity, relation, and attribution extraction. It allows developers and researchers to customize datasets and models to extract information from unstructured texts.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    D2L.ai

    D2L.ai

    Interactive deep learning book with multi-framework code

    Interactive deep learning book with multi-framework code, math, and discussions. Adopted at 300 universities from 55 countries including Stanford, MIT, Harvard, and Cambridge. This open-source book represents our attempt to make deep learning approachable, teaching you the concepts, the context, and the code. The entire book is drafted in Jupyter notebooks, seamlessly integrating exposition figures, math, and interactive examples with self-contained code.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    Lightning-Hydra-Template

    Lightning-Hydra-Template

    PyTorch Lightning + Hydra. A very user-friendly template

    Convenient all-in-one technology stack for deep learning prototyping - allows you to rapidly iterate over new models, datasets and tasks on different hardware accelerators like CPUs, multi-GPUs or TPUs. A collection of best practices for efficient workflow and reproducibility. Thoroughly commented - you can use this repo as a reference and educational resource. Not fitted for data engineering - the template configuration setup is not designed for building data processing pipelines that depend on each other. PyTorch Lightning, a lightweight PyTorch wrapper for high-performance AI research. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    TF2DeepFloorplan

    TF2DeepFloorplan

    TF2 Deep FloorPlan Recognition using a Multi-task Network

    TF2 Deep FloorPlan Recognition using a Multi-task Network with Room-boundary-Guided Attention. Enable tensorboard, quantization, flask, tflite, docker, github actions and google colab. This repo contains a basic procedure to train and deploy the DNN model suggested by the paper 'Deep Floor Plan Recognition using a Multi-task Network with Room-boundary-Guided Attention'. It rewrites the original codes from zlzeng/DeepFloorplan into newer versions of Tensorflow and Python.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    TensorFlow Ranking

    TensorFlow Ranking

    Learning to rank in TensorFlow

    ...Commonly used loss functions including pointwise, pairwise, and listwise losses. Commonly used ranking metrics like Mean Reciprocal Rank (MRR) and Normalized Discounted Cumulative Gain (NDCG). Multi-item (also known as groupwise) scoring functions. LambdaLoss implementation for direct ranking metric optimization. Unbiased Learning-to-Rank from biased feedback data. We envision that this library will provide a convenient open platform for hosting and advancing state-of-the-art ranking models based on deep learning techniques, and thus facilitate both academic research and industrial applications. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    sense2vec

    sense2vec

    Contextually-keyed word vectors

    sense2vec (Trask et. al, 2015) is a nice twist on word2vec that lets you learn more interesting and detailed word vectors. This library is a simple Python implementation for loading, querying and training sense2vec models. For more details, check out our blog post. To explore the semantic similarities across all Reddit comments of 2015 and 2019, see the interactive demo.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    NanoDet-Plus

    NanoDet-Plus

    Lightweight anchor-free object detection model

    ...In NanoDet-Plus, we propose a novel label assignment strategy with a simple assign guidance module (AGM) and a dynamic soft label assigner (DSLA) to solve the optimal label assignment problem in lightweight model training. We also introduce a light feature pyramid called Ghost-PAN to enhance multi-layer feature fusion. These improvements boost previous NanoDet's detection accuracy by 7 mAP on COCO dataset. NanoDet provide multi-backend C++ demo including ncnn, OpenVINO and MNN. There is also an Android demo based on ncnn library. Supports various backends including ncnn, MNN and OpenVINO. Also provide Android demo based on ncnn inference framework.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 20
    d2l-zh

    d2l-zh

    Chinese-language edition of Dive into Deep Learning

    d2l‑zh is the Chinese-language edition of Dive into Deep Learning, an interactive, open‑source deep learning textbook that combines code, math, and explanatory text. It features runnable Jupyter notebooks compatible with multiple frameworks (e.g., PyTorch, MXNet, TensorFlow), comprehensive theoretical analysis, and exercises. Widely adopted in over 70 countries and used by more than 500 universities for teaching deep learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    BEVFormer

    BEVFormer

    Implementation of BEVFormer, a camera-only framework

    3D visual perception tasks, including 3D detection and map segmentation based on multi-camera images, are essential for autonomous driving systems. In this work, we present a new framework termed BEVFormer, which learns unified BEV representations with spatiotemporal transformers to support multiple autonomous driving perception tasks. In a nutshell, BEVFormer exploits both spatial and temporal information by interacting with spatial and temporal space through predefined grid-shaped BEV queries. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Auto-PyTorch

    Auto-PyTorch

    Automatic architecture search and hyperparameter optimization

    ...Auto-PyTorch is mainly developed to support tabular data (classification, regression) and time series data (forecasting). The newest features in Auto-PyTorch for tabular data are described in the paper "Auto-PyTorch Tabular: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL" (see below for bibtex ref). Details about Auto-PyTorch for multi-horizontal time series forecasting tasks can be found in the paper "Efficient Automated Deep Learning for Time Series Forecasting" (also see below for bibtex ref).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    nlpaug

    nlpaug

    Data augmentation for NLP

    This Python library helps you with augmenting nlp for your machine learning projects. Visit this introduction to understand Data Augmentation in NLP. Augmenter is the basic element of augmentation while Flow is a pipeline to orchestra multi augmenters together.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Deep learning time series forecasting

    Deep learning time series forecasting

    Deep learning PyTorch library for time series forecasting

    Example image Flow Forecast (FF) is an open-source deep learning for time series forecasting framework. It provides all the latest state-of-the-art models (transformers, attention models, GRUs) and cutting-edge concepts with easy-to-understand interpretability metrics, cloud provider integration, and model serving capabilities. Flow Forecast was the first time series framework to feature support for transformer-based models and remains the only true end-to-end deep learning for time series...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Apache MXNet (incubating)

    Apache MXNet (incubating)

    A flexible and efficient library for deep learning

    Apache MXNet is an open source deep learning framework designed for efficient and flexible research prototyping and production. It contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations. On top of this is a graph optimization layer, overall making MXNet highly efficient yet still portable, lightweight and scalable.
    Downloads: 0 This Week
    Last Update:
    See Project