Showing 33 open source projects for "cpu"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Dragonfly | An In-Memory Data Store without Limits Icon
    Dragonfly | An In-Memory Data Store without Limits

    Dragonfly Cloud is engineered to handle the heaviest data workloads with the strictest security requirements.

    Dragonfly is a drop-in Redis replacement that is designed for heavy data workloads running on modern cloud hardware. Migrate in less than a day and experience up to 25X the performance on half the infrastructure.
    Learn More
  • 1
    FARM

    FARM

    Fast & easy transfer learning for NLP

    ...With FARM you can build fast proofs-of-concept for tasks like text classification, NER or question answering and transfer them easily into production. Easy fine-tuning of language models to your task and domain language. AMP optimizers (~35% faster) and parallel preprocessing (16 CPU cores => ~16x faster). Modular design of language models and prediction heads. Switch between heads or combine them for multitask learning. Full Compatibility with HuggingFace Transformers' models and model hub. Smooth upgrading to newer language models. Integration of custom datasets via Processor class. Powerful experiment tracking & execution.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    TFLearn

    TFLearn

    Deep learning library featuring a higher-level API for TensorFlow

    ...Powerful helper functions to train any TensorFlow graph, with support of multiple inputs, outputs, and optimizers. Easy and beautiful graph visualization, with details about weights, gradients, activations, and more. Effortless device placement for using multiple CPU/GPU. The high-level API currently supports the most of the recent deep learning models, such as Convolutions, LSTM, BiRNN, BatchNorm, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    imgaug

    imgaug

    Image augmentation for machine learning experiments

    imgaug is a library for image augmentation in machine learning experiments. It supports a wide range of augmentation techniques, allows to easily combine these and to execute them in random order or on multiple CPU cores, has a simple yet powerful stochastic interface and can not only augment images but also key points/landmarks, bounding boxes, heatmaps and segmentation maps. Affine transformations, perspective transformations, contrast changes, gaussian noise, dropout of regions, hue/saturation changes, cropping/padding, blurring, etc. Rotate image and segmentation map on it by the same value sampled. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    textgenrnn

    textgenrnn

    Easily train your own text-generating neural network

    ...Configure RNN size, the number of RNN layers, and whether to use bidirectional RNNs. Train on any generic input text file, including large files. Train models on a GPU and then use them to generate text with a CPU. Utilize a powerful CuDNN implementation of RNNs when trained on the GPU, which massively speeds up training time as opposed to typical LSTM implementations. Train the model using contextual labels, allowing it to learn faster and produce better results in some cases.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Epicor BisTrack is a powerful business management software designed specifically for the needs of the building materials industry, including lumberyards, construction suppliers, and distributors. Icon
    Epicor BisTrack is a powerful business management software designed specifically for the needs of the building materials industry, including lumberyards, construction suppliers, and distributors.

    For construction companies looking for a business management solution for building centers

    Epicor BisTrack is a powerful business management software designed specifically for the needs of the building materials industry, including lumberyards, construction suppliers, and distributors. Known for its comprehensive suite of tools, BisTrack streamlines operations by integrating inventory management, purchasing, sales, and delivery processes into a single, user-friendly platform. Its advanced reporting and analytics capabilities enable businesses to make data-driven decisions, optimize workflows, and enhance customer service. With robust mobile functionality and seamless cloud-based deployment options, BisTrack supports real-time collaboration and efficient operations across teams, ensuring businesses stay competitive in a fast-paced industry.
    Learn More
  • 5
    PyTorch Book

    PyTorch Book

    PyTorch tutorials and fun projects including neural talk

    ...The current version of the code is based on pytorch 1.0.1, if you want to use an older version please git checkout v0.4or git checkout v0.3. Legacy code has better python2/python3 compatibility, CPU/GPU compatibility test. The new version of the code has not been fully tested, it has been tested under GPU and python3. But in theory there shouldn't be too many problems on python2 and CPU. The basic part (the first five chapters) explains the content of PyTorch. This part introduces the main modules in PyTorch and some tools commonly used in deep learning. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Deepo

    Deepo

    Set up deep learning environment in a single command line

    Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment, supports almost all commonly used deep learning frameworks, supports GPU acceleration (CUDA and cuDNN included), also works in CPU-only mode, and works on Linux (CPU version/GPU version), Windows (CPU version) and OS X (CPU version). Their Dockerfile generator that allows you to customize your own environment with Lego-like modules, and automatically resolves the dependencies for you. For users in China who may suffer from slow speeds when pulling the image from the public Docker registry, you can pull deepo images from the China registry mirror by specifying the full path, including the registry, in your docker pull command. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Deep Learning with Keras and Tensorflow

    Deep Learning with Keras and Tensorflow

    Introduction to Deep Neural Networks with Keras and Tensorflow

    Introduction to Deep Neural Networks with Keras and Tensorflow. To date tensorflow comes in two different packages, namely tensorflow and tensorflow-gpu, whether you want to install the framework with CPU-only or GPU support, respectively. NVIDIA Drivers and CuDNN must be installed and configured before hand. Please refer to the official Tensorflow documentation for further details. Since version 0.9 Theano introduced the libgpuarray in the stable release (it was previously only available in the development version). The goal of libgpuarray is (from the documentation) make a common GPU ndarray (n dimensions array) that can be reused by all projects that is as future proof as possible, while keeping it easy to use for simple need/quick test. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8

    Unsupervised Random Forest

    On-line Unsupervised Random Forest

    This tool uses Random Forest and PAM to cluster observations and to calculate the dissimilarity between observations. It supports on-line prediction of new observations (no need to retrain); and supports datasets that contain both continuous (e.g. CPU load) and categorical (e.g. VM instance type) features. In particular, we use an unsupervised formulation of the Random Forest algorithm to calculate similarities and provide them as input to a clustering algorithm. For the sake of efficiency and meeting the dynamism requirement of autonomic clouds, our methodology consists of two steps: (i) off-line clustering and (ii) on-line prediction. ...
    Downloads: 0 This Week
    Last Update:
    See Project