Showing 487 open source projects for "python for windows"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 1
    anaGo

    anaGo

    Bidirectional LSTM-CRF and ELMo for Named-Entity Recognition

    anaGo is a Python library for sequence labeling(NER, PoS Tagging,...), implemented in Keras. anaGo can solve sequence labeling tasks such as named entity recognition (NER), part-of-speech tagging (POS tagging), semantic role labeling (SRL) and so on. Unlike traditional sequence labeling solver, anaGo doesn't need to define any language-dependent features. Thus, we can easily use anaGo for any language. In anaGo, the simplest type of model is the Sequence model. Sequence model includes...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    SSD Keras

    SSD Keras

    A Keras port of single shot MultiBox detector

    This is a Keras port of the SSD model architecture introduced by Wei Liu et al. in the paper SSD: Single Shot MultiBox Detector. Ports of the trained weights of all the original models are provided below. This implementation is accurate, meaning that both the ported weights and models trained from scratch produce the same mAP values as the respective models of the original Caffe implementation. The main goal of this project is to create an SSD implementation that is well documented for those...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Deep Reinforcement Learning for Keras

    Deep Reinforcement Learning for Keras

    Deep Reinforcement Learning for Keras.

    keras-rl implements some state-of-the-art deep reinforcement learning algorithms in Python and seamlessly integrates with the deep learning library Keras. Furthermore, keras-rl works with OpenAI Gym out of the box. This means that evaluating and playing around with different algorithms is easy. Of course, you can extend keras-rl according to your own needs. You can use built-in Keras callbacks and metrics or define your own. Even more so, it is easy to implement your own environments and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    DeepLearn

    DeepLearn

    Implementation of research papers on Deep Learning+ NLP+ CV in Python

    Welcome to DeepLearn. This repository contains an implementation of the following research papers on NLP, CV, ML, and deep learning. The required dependencies are mentioned in requirement.txt. I will also use dl-text modules for preparing the datasets. If you haven't use it, please do have a quick look at it. CV, transfer learning, representation learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    mAP

    mAP

    Evaluates the performance of your neural net for object recognition

    In practice, a higher mAP value indicates a better performance of your neural net, given your ground truth and set of classes. The performance of your neural net will be judged using the mAP criteria defined in the PASCAL VOC 2012 competition. We simply adapted the official Matlab code into Python (in our tests they both give the same results). First, your neural net detection-results are sorted by decreasing confidence and are assigned to ground-truth objects. We have "a match" when they...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    stanford-tensorflow-tutorials

    stanford-tensorflow-tutorials

    This repository contains code examples for the Stanford's course

    This repository contains code examples for the course CS 20: TensorFlow for Deep Learning Research. It will be updated as the class progresses. Detailed syllabus and lecture notes can be found in the site. For this course, I use python3.6 and TensorFlow 1.4.1.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    DIGITS

    DIGITS

    Deep Learning GPU training system

    The NVIDIA Deep Learning GPU Training System (DIGITS) puts the power of deep learning into the hands of engineers and data scientists. DIGITS can be used to rapidly train the highly accurate deep neural network (DNNs) for image classification, segmentation and object detection tasks. DIGITS simplifies common deep learning tasks such as managing data, designing and training neural networks on multi-GPU systems, monitoring performance in real-time with advanced visualizations, and selecting...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    The Deep Review

    The Deep Review

    A collaboratively written review paper on deep learning, genomics, etc

    This repository is home to the Deep Review, a review article on deep learning in precision medicine. The Deep Review is collaboratively written on GitHub using a tool called Manubot (see below). The project operates on an open contribution model, welcoming contributions from anyone. To see what's incoming, check the open pull requests. For project discussion and planning see the Issues. As of writing, we are aiming to publish an update of the deep review. We will continue to make project...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    PyTorch Book

    PyTorch Book

    PyTorch tutorials and fun projects including neural talk

    This is the corresponding code for the book "The Deep Learning Framework PyTorch: Getting Started and Practical", but it can also be used as a standalone PyTorch Getting Started Guide and Tutorial. The current version of the code is based on pytorch 1.0.1, if you want to use an older version please git checkout v0.4or git checkout v0.3. Legacy code has better python2/python3 compatibility, CPU/GPU compatibility test. The new version of the code has not been fully tested, it has been tested...
    Downloads: 0 This Week
    Last Update:
    See Project
  • WinMan ERP Software Icon
    WinMan ERP Software

    For companies of all sizes and enterprises in need of a solution to improve their operations

    WinMan ERP is an all-encompassing solution designed to manage the operational, quality, commercial, and financial processes of manufacturers and distributors. It is particularly well-suited for companies embracing Lean strategies.
    Learn More
  • 10
    Image classification models for Keras

    Image classification models for Keras

    Keras code and weights files for popular deep learning models

    All architectures are compatible with both TensorFlow and Theano, and upon instantiation the models will be built according to the image dimension ordering set in your Keras configuration file at ~/.keras/keras.json. For instance, if you have set image_dim_ordering=tf, then any model loaded from this repository will get built according to the TensorFlow dimension ordering convention, "Width-Height-Depth". Pre-trained weights can be automatically loaded upon instantiation (weights='imagenet'...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Intel neon

    Intel neon

    Intel® Nervana™ reference deep learning framework

    neon is Intel's reference deep learning framework committed to best performance on all hardware. Designed for ease of use and extensibility. See the new features in our latest release. We want to highlight that neon v2.0.0+ has been optimized for much better performance on CPUs by enabling Intel Math Kernel Library (MKL). The DNN (Deep Neural Networks) component of MKL that is used by neon is provided free of charge and downloaded automatically as part of the neon installation. The gpu...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Tangent

    Tangent

    Source-to-source debuggable derivatives in pure Python

    Existing libraries implement automatic differentiation by tracing a program's execution (at runtime, like PyTorch) or by staging out a dynamic data-flow graph and then differentiating the graph (ahead-of-time, like TensorFlow). In contrast, Tangent performs ahead-of-time autodiff on the Python source code itself, and produces Python source code as its output. Tangent fills a unique location in the space of machine learning tools. As a result, you can finally read your automatic derivative...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Deepo

    Deepo

    Set up deep learning environment in a single command line

    Deepo is a series of Docker images that allows you to quickly set up your deep learning research environment, supports almost all commonly used deep learning frameworks, supports GPU acceleration (CUDA and cuDNN included), also works in CPU-only mode, and works on Linux (CPU version/GPU version), Windows (CPU version) and OS X (CPU version). Their Dockerfile generator that allows you to customize your own environment with Lego-like modules, and automatically resolves the dependencies for...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Five video classification methods

    Five video classification methods

    Code that accompanies my blog post outlining five video classification

    Classifying video presents unique challenges for machine learning models. As I’ve covered in my previous posts, video has the added (and interesting) property of temporal features in addition to the spatial features present in 2D images. While this additional information provides us more to work with, it also requires different network architectures and, often, adds larger memory and computational demands.We won’t use any optical flow images. This reduces model complexity, training time, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    AI learning

    AI learning

    AiLearning, data analysis plus machine learning practice

    We actively respond to the Research Open Source Initiative (DOCX) . Open source today is not just open source, but datasets, models, tutorials, and experimental records. We are also exploring other categories of open source solutions and protocols. I hope you will understand this initiative, combine this initiative with your own interests, and do what you can. Everyone's tiny contributions, together, are the entire open source ecosystem. We are iBooker, a large open-source community,...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 16
    auto_ml

    auto_ml

    Automated machine learning for analytics & production

    auto_ml is designed for production. Here's an example that includes serializing and loading the trained model, then getting predictions on single dictionaries, roughly the process you'd likely follow to deploy the trained model. Before you go any further, try running the code. Load up some data (either a DataFrame, or a list of dictionaries, where each dictionary is a row of data). Make a column_descriptions dictionary that tells us which attribute name in each row represents the value we’re...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Deep Learning with Keras and Tensorflow

    Deep Learning with Keras and Tensorflow

    Introduction to Deep Neural Networks with Keras and Tensorflow

    Introduction to Deep Neural Networks with Keras and Tensorflow. To date tensorflow comes in two different packages, namely tensorflow and tensorflow-gpu, whether you want to install the framework with CPU-only or GPU support, respectively. NVIDIA Drivers and CuDNN must be installed and configured before hand. Please refer to the official Tensorflow documentation for further details. Since version 0.9 Theano introduced the libgpuarray in the stable release (it was previously only available in...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18

    Chronological Cohesive Units

    The experimental source code for the paper

    The experimental source code for the paper, "A Novel Recommendation Approach Based on Chronological Cohesive Units in Content Consuming"
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Lip Reading

    Lip Reading

    Cross Audio-Visual Recognition using 3D Architectures

    The input pipeline must be prepared by the users. This code is aimed to provide the implementation for Coupled 3D Convolutional Neural Networks for audio-visual matching. Lip-reading can be a specific application for this work. Audio-visual recognition (AVR) has been considered as a solution for speech recognition tasks when the audio is corrupted, as well as a visual recognition method used for speaker verification in multi-speaker scenarios. The approach of AVR systems is to leverage the...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 20
    Machine Learning for OpenCV

    Machine Learning for OpenCV

    M. Beyeler (2017). Machine Learning for OpenCV

    M. Beyeler (2017). Machine Learning for OpenCV: Intelligent image processing with Python. Packt Publishing Ltd., ISBN 978-178398028-4.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    TensorFlow on Raspberry Pi

    TensorFlow on Raspberry Pi

    TensorFlow for Raspberry Pi

    TensorFlow on Raspberry Pi.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22

    Training Image Operators from Samples

    Tools to train Image Operators automatically from a set of samples.

    TRIOS - Training Image Operators from Samples is a set of tools to bring Image Processing closer to scientists in general. It is capable of estimating an operator between two images using only pairs of samples that contain an input image and the desired output. The operator is saved to a file and can be applied to any image.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    DSTK - DataScience ToolKit

    DSTK - DataScience ToolKit

    DSTK - DataScience ToolKit for All of Us

    DSTK - DataScience ToolKit is an opensource free software for statistical analysis, data visualization, text analysis, and predictive analytics. Newer version and smaller file size can be found at: https://sourceforge.net/projects/dstk3/ It is designed to be straight forward and easy to use, and familar to SPSS user. While JASP offers more statistical features, DSTK tends to be a broad solution workbench, including text analysis and predictive analytics features. Of course you may specify...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Scattertext 0.2.1

    Scattertext 0.2.1

    Beautiful visualizations of how language differs among document types

    A tool for finding distinguishing terms in corpora and displaying them in an interactive HTML scatter plot. Points corresponding to terms are selectively labeled so that they don't overlap with other labels or points.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25

    PyDaMelo

    Python-compatible Data mining elementary objects

    An attempt at offering machine learning and data mining algorithms at the finest grain we are able to, easy to combine together through Python scripting to glue together the Lego-like bricks.
    Downloads: 0 This Week
    Last Update:
    See Project