Open Source Python Machine Learning Software - Page 15

Python Machine Learning Software

View 447 business solutions

Browse free open source Python Machine Learning Software and projects below. Use the toggles on the left to filter open source Python Machine Learning Software by OS, license, language, programming language, and project status.

  • Stay in Flow. Let Zenflow Handle the Heavy Lifting. Icon
    Stay in Flow. Let Zenflow Handle the Heavy Lifting.

    Your AI engineering control center. Zenflow turns specs into shipped features using parallel agents and multi-repo intelligence.

    Zenflow is your engineering control center, turning specs into shipped features. Parallel agents handle coding, testing, and refactoring with real repo context. Multi-agent workflows remove bottlenecks and automate routine work so developers stay focused and in flow.
    Try free now
  • Auth0 for AI Agents now in GA Icon
    Auth0 for AI Agents now in GA

    Ready to implement AI with confidence (without sacrificing security)?

    Connect your AI agents to apps and data more securely, give users control over the actions AI agents can perform and the data they can access, and enable human confirmation for critical agent actions.
    Start building today
  • 1
    Opyrator

    Opyrator

    Turns your machine learning code into microservices with web API

    Instantly turn your Python functions into production-ready microservices. Deploy and access your services via HTTP API or interactive UI. Seamlessly export your services into portable, shareable, and executable files or Docker images. Opyrator builds on open standards - OpenAPI, JSON Schema, and Python type hints - and is powered by FastAPI, Streamlit, and Pydantic. It cuts out all the pain for productizing and sharing your Python code - or anything you can wrap into a single Python function. An Opyrator-compatible function is required to have an input parameter and return value based on Pydantic models. The input and output models are specified via type hints. You can launch a graphical user interface - powered by Streamlit - for your compatible function. The UI is auto-generated from the input- and output-schema of the given function.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Orion

    Orion

    A machine learning library for detecting anomalies in signals

    Orion is a machine-learning library built for unsupervised time series anomaly detection. Such signals are generated by a wide variety of systems, few examples include telemetry data generated by satellites, signals from wind turbines, and even stock market price tickers. We built this to provide one place where users can find the latest and greatest in machine learning and deep learning world including our own innovations. Abstract away from the users the nitty-gritty about preprocessing, finding the best pipeline, and postprocessing. We want to provide a systematic way to evaluate the latest and greatest machine learning methods via our benchmarking effort. Build time series anomaly detection platforms custom to their workflows through our backend database and rest API. A way for machine learning researchers to contribute in a scaffolded way so their innovations are immediately available to the end users.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    PORORO

    PORORO

    Platform of neural models for natural language processing

    pororo performs Natural Language Processing and Speech-related tasks. It is easy to solve various subtasks in the natural language and speech processing field by simply passing the task name. Recognized speech sentences using the trained model. Currently English, Korean and Chinese support. Get vector or find similar words and entities from pretrained model using Wikipedia.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Pandas Profiling

    Pandas Profiling

    Create HTML profiling reports from pandas DataFrame objects

    pandas-profiling generates profile reports from a pandas DataFrame. The pandas df.describe() function is handy yet a little basic for exploratory data analysis. pandas-profiling extends pandas DataFrame with df.profile_report(), which automatically generates a standardized univariate and multivariate report for data understanding. High correlation warnings, based on different correlation metrics (Spearman, Pearson, Kendall, Cramér’s V, Phik). Most common categories (uppercase, lowercase, separator), scripts (Latin, Cyrillic) and blocks (ASCII, Cyrilic). File sizes, creation dates, dimensions, indication of truncated images and existance of EXIF metadata. Mostly global details about the dataset (number of records, number of variables, overall missigness and duplicates, memory footprint). Comprehensive and automatic list of potential data quality issues (high correlation, skewness, uniformity, zeros, missing values, constant values, between others).
    Downloads: 0 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 5
    PennyLane

    PennyLane

    A cross-platform Python library for differentiable programming

    A cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural network. Built-in automatic differentiation of quantum circuits, using the near-term quantum devices directly. You can combine multiple quantum devices with classical processing arbitrarily! Support for hybrid quantum and classical models, and compatible with existing machine learning libraries. Quantum circuits can be set up to interface with either NumPy, PyTorch, JAX, or TensorFlow, allowing hybrid CPU-GPU-QPU computations. The same quantum circuit model can be run on different devices. Install plugins to run your computational circuits on more devices, including Strawberry Fields, Amazon Braket, Qiskit and IBM Q, Google Cirq, Rigetti Forest, and the Microsoft QDK.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Perceptual Similarity Metric and Dataset

    Perceptual Similarity Metric and Dataset

    LPIPS metric. pip install lpips

    While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on ImageNet classification has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new dataset of human perceptual similarity judgments. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by large margins on our dataset.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Petastorm

    Petastorm

    Petastorm library enables single machine or distributed training

    Petastorm library enables single machine or distributed training and evaluation of deep learning models from datasets in Apache Parquet format. It supports ML frameworks such as Tensorflow, Pytorch, and PySpark and can be used from pure Python code. Petastorm is an open-source data access library developed at Uber ATG. This library enables single machine or distributed training and evaluation of deep learning models directly from datasets in Apache Parquet format. Petastorm supports popular Python-based machine learning (ML) frameworks such as Tensorflow, PyTorch, and PySpark. It can also be used from pure Python code. A dataset created using Petastorm is stored in Apache Parquet format. On top of a Parquet schema, petastorm also stores higher-level schema information that makes multidimensional arrays into a native part of a petastorm dataset. Petastorm supports extensible data codecs. These enable a user to use one of the standard data compressions (jpeg, png) or implement her own.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Physical Symbolic Optimization (Φ-SO)

    Physical Symbolic Optimization (Φ-SO)

    Physical Symbolic Optimization

    Physical Symbolic Optimization (Φ-SO) - A symbolic optimization package built for physics. Symbolic regression module uses deep reinforcement learning to infer analytical physical laws that fit data points, searching in the space of functional forms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    PromptSource

    PromptSource

    Toolkit for creating, sharing and using natural language prompts

    PromptSource is a toolkit for creating, sharing and using natural language prompts. Recent work has shown that large language models exhibit the ability to perform reasonable zero-shot generalization to new tasks. For instance, GPT-3 demonstrated that large language models have strong zero- and few-shot abilities. FLAN and T0 then demonstrated that pre-trained language models fine-tuned in a massively multitask fashion yield even stronger zero-shot performance. A common denominator in these works is the use of prompts which has gained interest among NLP researchers and engineers. This emphasizes the need for new tools to create, share and use natural language prompts. Prompts are functions that map an example from a dataset to a natural language input and target output. PromptSource contains a growing collection of prompts (which we call P3: Public Pool of Prompts). As of January 20, 2022, there are ~2'000 English prompts for 170+ English datasets in P3.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Loan management software that makes it easy. Icon
    Loan management software that makes it easy.

    Ideal for lending professionals who are looking for a feature rich loan management system

    Bryt Software is ideal for lending professionals who are looking for a feature rich loan management system that is intuitive and easy to use. We are 100% cloud-based, software as a service. We believe in providing our customers with fair and honest pricing. Our monthly fees are based on your number of users and we have a minimal implementation charge.
    Learn More
  • 10
    PromptTools

    PromptTools

    Open-source tools for prompt testing and experimentation

    Welcome to prompttools created by Hegel AI! This repo offers a set of open-source, self-hostable tools for experimenting with, testing, and evaluating LLMs, vector databases, and prompts. The core idea is to enable developers to evaluate using familiar interfaces like code, notebooks, and a local playground.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Pronac MediaMonkey Extension

    Pronac MediaMonkey Extension

    Recommends music based upon your current taste.

    A music recommendation engine. It is meant to be an add-on for popular media players like Winamp, Amarok, Rhythmbox or Banshee. Currently supports only MediaMonkey Player. Downlaod, extract and run "pronac.exe". Play the first song from the Now Playing list, it'll recommend you next songs from the same list. NOTE: MAKE SURE THAT SONG SHUFFLE IS TURNED OFF WHILE USING PRONAC. Based upon K-Nearest Neighbor Machine Learning Algorithm, K-Fold Cross Validation and EchoNest for audio features.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12

    ProximityForest

    Efficient Approximate Nearest Neighbors for General Metric Spaces

    A proximity forest is a data structure that allows for efficient computation of approximate nearest neighbors of arbitrary data elements in a metric space. See: O'Hara and Draper, "Are You Using the Right Approximate Nearest Neighbor Algorithm?", WACV 2013 (best student paper award). One application of a ProximityForest is given in the following CVPR publication: Stephen O'Hara and Bruce A. Draper, "Scalable Action Recognition with a Subspace Forest," IEEE Conference on Computer Vision and Pattern Recognition, 2012. This source code is provided without warranty and is available under the GPL license. More commercially-friendly licenses may be available. Please contact Stephen O'Hara for license options. Please view the wiki on this site for installation instructions and examples on reproducing the results of the papers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13

    PyCBR

    This project aims to provide a simple python interface for CBR

    Case base reasoninig is one of the primitive AI techniques in existance. Infact it's one of the laziest. Implementation however takes some effort. Python is one of the most to used languages that is becoming popular in every community for its simplicity & ease of learning. It has an interface for wordnet (through nltk tools) which brings us why pyCBR exists. This script is still in its infant stage of CBR & script matching. Nontheless you could use it to do many crazy stuff. Enjoy!!!
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    PyCaret

    PyCaret

    An open-source, low-code machine learning library in Python

    PyCaret is an open-source, low-code machine learning library in Python that automates machine learning workflows. It is an end-to-end machine learning and model management tool that speeds up the experiment cycle exponentially and makes you more productive. In comparison with the other open-source machine learning libraries, PyCaret is an alternate low-code library that can be used to replace hundreds of lines of code with few lines only. This makes experiments exponentially fast and efficient. PyCaret is essentially a Python wrapper around several machine learning libraries and frameworks such as scikit-learn, XGBoost, LightGBM, CatBoost, Optuna, Hyperopt, Ray, and few more. The design and simplicity of PyCaret are inspired by the emerging role of citizen data scientists, a term first used by Gartner. Citizen Data Scientists are power users who can perform both simple and moderately sophisticated analytical tasks that would previously have required more technical expertise.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15

    PyDaMelo

    Python-compatible Data mining elementary objects

    An attempt at offering machine learning and data mining algorithms at the finest grain we are able to, easy to combine together through Python scripting to glue together the Lego-like bricks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    A Python function library to extract EEG feature from EEG time series in standard Python and numpy data structure. Features include classical spectral analysis, entropies, fractal dimensions, DFA, inter-channel synchrony and order, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    PyGAD

    PyGAD

    Source code of PyGAD, Python 3 library for building genetic algorithms

    PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine learning algorithms. It supports Keras and PyTorch. PyGAD supports optimizing both single-objective and multi-objective problems. PyGAD supports different types of crossover, mutation, and parent selection. PyGAD allows different types of problems to be optimized using the genetic algorithm by customizing the fitness function.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    PyKEEN

    PyKEEN

    A Python library for learning and evaluating knowledge graph embedding

    PyKEEN (Python KnowlEdge EmbeddiNgs) is a Python package designed to train and evaluate knowledge graph embedding models (incorporating multi-modal information). PyKEEN is a Python package for reproducible, facile knowledge graph embeddings. PyKEEN has a function pykeen.env() that magically prints relevant version information about PyTorch, CUDA, and your operating system that can be used for debugging. If you’re in a Jupyter Notebook, it will be pretty-printed as an HTML table.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    PyPR - Python Pattern Recognition. A small collection of useful pattern recognition methods. The code is still in its early stages.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    PySyft

    PySyft

    Data science on data without acquiring a copy

    Most software libraries let you compute over the information you own and see inside of machines you control. However, this means that you cannot compute on information without first obtaining (at least partial) ownership of that information. It also means that you cannot compute using machines without first obtaining control over those machines. This is very limiting to human collaboration and systematically drives the centralization of data, because you cannot work with a bunch of data without first putting it all in one (central) place. The Syft ecosystem seeks to change this system, allowing you to write software which can compute over information you do not own on machines you do not have (total) control over. This not only includes servers in the cloud, but also personal desktops, laptops, mobile phones, websites, and edge devices. Wherever your data wants to live in your ownership, the Syft ecosystem exists to help keep it there while allowing it to be used privately.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    PyTextRank

    PyTextRank

    Python implementation of TextRank algorithms

    PyTextRank is a Python implementation of TextRank as a spaCy pipeline extension, for graph-based natural language work -- and related knowledge graph practices.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    PyTorch Forecasting

    PyTorch Forecasting

    Time series forecasting with PyTorch

    PyTorch Forecasting aims to ease state-of-the-art time series forecasting with neural networks for both real-world cases and research alike. The goal is to provide a high-level API with maximum flexibility for professionals and reasonable defaults for beginners. A time series dataset class that abstracts handling variable transformations, missing values, randomized subsampling, multiple history lengths, etc. A base model class that provides basic training of time series models along with logging in tensorboard and generic visualizations such actual vs predictions and dependency plots. Multiple neural network architectures for timeseries forecasting that have been enhanced for real-world deployment and come with in-built interpretation capabilities. The package is built on PyTorch Lightning to allow training on CPUs, single and multiple GPUs out-of-the-box.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    PyTorch Geometric

    PyTorch Geometric

    Geometric deep learning extension library for PyTorch

    It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of an easy-to-use mini-batch loader for many small and single giant graphs, a large number of common benchmark datasets (based on simple interfaces to create your own), and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds. We have outsourced a lot of functionality of PyTorch Geometric to other packages, which needs to be additionally installed. These packages come with their own CPU and GPU kernel implementations based on C++/CUDA extensions. We do not recommend installation as root user on your system python. Please setup an Anaconda/Miniconda environment or create a Docker image. We provide pip wheels for all major OS/PyTorch/CUDA combinations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    PyTorch Geometric Temporal

    PyTorch Geometric Temporal

    Spatiotemporal Signal Processing with Neural Machine Learning Models

    The library consists of various dynamic and temporal geometric deep learning, embedding, and Spatio-temporal regression methods from a variety of published research papers. Moreover, it comes with an easy-to-use dataset loader, train-test splitter and temporal snaphot iterator for dynamic and temporal graphs. The framework naturally provides GPU support. It also comes with a number of benchmark datasets from the epidemiological forecasting, sharing economy, energy production and web traffic management domains. Finally, you can also create your own datasets. The package interfaces well with Pytorch Lightning which allows training on CPUs, single and multiple GPUs out-of-the-box. PyTorch Geometric Temporal makes implementing Dynamic and Temporal Graph Neural Networks quite easy - see the accompanying tutorial. Head over to our documentation to find out more about installation, creation of datasets and a full list of implemented methods and available datasets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    PyTorch Ignite

    PyTorch Ignite

    Library to help with training and evaluating neural networks

    High-level library to help with training and evaluating neural networks in PyTorch flexibly and transparently. Less code than pure PyTorch while ensuring maximum control and simplicity. Library approach and no program's control inversion. Use ignite where and when you need. Extensible API for metrics, experiment managers, and other components. The cool thing with handlers is that they offer unparalleled flexibility (compared to, for example, callbacks). Handlers can be any function: e.g. lambda, simple function, class method, etc. Thus, we do not require to inherit from an interface and override its abstract methods which could unnecessarily bulk up your code and its complexity. Extremely simple engine and event system. Out-of-the-box metrics to easily evaluate models. Built-in handlers to compose training pipeline, save artifacts and log parameters and metrics.
    Downloads: 0 This Week
    Last Update:
    See Project