Open Source MATLAB Machine Learning Software

MATLAB Machine Learning Software

View 447 business solutions

Browse free open source MATLAB Machine Learning Software and projects below. Use the toggles on the left to filter open source MATLAB Machine Learning Software by OS, license, language, programming language, and project status.

  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 1
    Armadillo

    Armadillo

    fast C++ library for linear algebra & scientific computing

    * Fast C++ library for linear algebra (matrix maths) and scientific computing * Easy to use functions and syntax, deliberately similar to Matlab / Octave * Uses template meta-programming techniques to increase efficiency * Provides user-friendly wrappers for OpenBLAS, Intel MKL, LAPACK, ATLAS, ARPACK, SuperLU and FFTW libraries * Useful for machine learning, pattern recognition, signal processing, bioinformatics, statistics, finance, etc. * Downloads: http://arma.sourceforge.net/download.html * Documentation: http://arma.sourceforge.net/docs.html * Bug reports: http://arma.sourceforge.net/faq.html * Git repo: https://gitlab.com/conradsnicta/armadillo-code
    Leader badge
    Downloads: 2,183 This Week
    Last Update:
    See Project
  • 2

    OpenFace

    A state-of-the-art facial behavior analysis toolkit

    OpenFace is an advanced facial behavior analysis toolkit intended for computer vision and machine learning researchers, those in the affective computing community, and those who are simply interested in creating interactive applications based on facial behavior analysis. The OpenFace toolkit is capable of performing several complex facial analysis tasks, including facial landmark detection, eye-gaze estimation, head pose estimation and facial action unit recognition. OpenFace is able to deliver state-of-the-art results in all of these mentioned tasks. OpenFace is available for Windows, Ubuntu and macOS installations. It is capable of real-time performance and does not need to run on any specialist hardware, a simple webcam will suffice.
    Downloads: 32 This Week
    Last Update:
    See Project
  • 3
    Coursera Machine Learning

    Coursera Machine Learning

    Coursera Machine Learning By Prof. Andrew Ng

    CourseraMachineLearning is a personal collection of resources, notes, and programming exercises from Andrew Ng’s popular Machine Learning course on Coursera. It consolidates lecture references, programming tutorials, test cases, and supporting materials into one repository for easier review and practice. The project highlights fundamental machine learning concepts such as hypothesis functions, cost functions, gradient descent, bias-variance tradeoffs, and regression models. It also organizes week-by-week course schedules with links to exercises, lecture notes, and additional resources. Alongside the official coursework, the repository includes supplemental explanations, code snippets, and references to recommended textbooks and external materials. By gathering course-related resources into a single space, this project acts as a practical study companion for learners revisiting or supplementing the original course.
    Downloads: 23 This Week
    Last Update:
    See Project
  • 4
    CFNet

    CFNet

    Training a Correlation Filter end-to-end allows lightweight networks

    CFNet is the official implementation of End-to-end representation learning for Correlation Filter based tracking (CVPR 2017) by Luca Bertinetto, Jack Valmadre, João F. Henriques, Andrea Vedaldi, and Philip H. S. Torr. The framework combines correlation filters with deep convolutional neural networks to create an efficient and accurate visual object tracker. Unlike traditional correlation filter trackers that rely on hand-crafted features, CFNet learns feature representations directly from data in an end-to-end fashion. This allows the tracker to be both computationally efficient and robust to appearance changes such as scale, rotation, and illumination variations. The repository provides pre-trained models, training code, and testing scripts for evaluating the tracker on standard benchmarks. By bridging the gap between correlation filters and deep learning, CFNet provides a foundation for further research in real-time object tracking.
    Downloads: 15 This Week
    Last Update:
    See Project
  • MyQ Print Management Software Icon
    MyQ Print Management Software

    SAVE TIME WITH PERSONALIZED PRINT SOLUTIONS

    Boost your digital or traditional workplace with MyQ’s secure print and scan solutions that respect your time and help you focus on what you do best.
    Learn More
  • 5
    Stanford Machine Learning Course

    Stanford Machine Learning Course

    machine learning course programming exercise

    The Stanford Machine Learning Course Exercises repository contains programming assignments from the well-known Stanford Machine Learning online course. It includes implementations of a variety of fundamental algorithms using Python and MATLAB/Octave. The repository covers a broad set of topics such as linear regression, logistic regression, neural networks, clustering, support vector machines, and recommender systems. Each folder corresponds to a specific algorithm or concept, making it easy for learners to navigate and practice. The exercises serve as practical, hands-on reinforcement of theoretical concepts taught in the course. This collection is valuable for students and practitioners who want to strengthen their skills in machine learning through coding exercises.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 6
    CometAnalyser

    CometAnalyser

    CometAnalyser, for quantitative comet assay analysis.

    Description: Comet assay provides an easy solution to estimate DNA damage in single cells through microscopy assessment. To obtain reproducible and reliable quantitative data, we developed an easy-to-use tool named CometAnalyser. CometAnalyser is an open-source deep-learning tool designed for the analysis of both fluorescent and silver-stained wide-field microscopy images. Once the comets are segmented and classified, several intensity/morphological features are automatically exported as a spreadsheet file. Video Tutorial: CometAnalyser is written in MATLAB. It works with Windows, Macintosh, and UNIX-based systems. Please, download the sample datasets and test it watching the video tutorial to understand how it works: https://www.youtube.com/watch?v=vh2VFnMw50A Contacts: filippo.piccinini85@gmail.com beleonattila@gmail.com
    Downloads: 22 This Week
    Last Update:
    See Project
  • 7

    JAABA

    The Janelia Automated Animal Behavior Annotator

    The Janelia Automatic Animal Behavior Annotator (JAABA) is a machine learning-based system that enables researchers to automatically compute interpretable, quantitative statistics describing video of behaving animals. Through our system, users encode their intuition about the structure of behavior by labeling the behavior of the animal, e.g. walking, grooming, or following, in a small set of video frames. JAABA uses machine learning techniques to convert these manual labels into behavior detectors that can then be used to automatically classify the behaviors of animals in large data sets with high throughput. JAABA combines an intuitive graphical user interface, a fast and powerful machine learning algorithm, and visualizations of the classifier into an interactive, usable system for creating automatic behavior detectors. Documentation is available at: http://jaaba.sourceforge.net/
    Leader badge
    Downloads: 8 This Week
    Last Update:
    See Project
  • 8
    mTRF-Toolbox

    mTRF-Toolbox

    A MATLAB package for modelling multivariate stimulus-response data

    mTRF-Toolbox is a MATLAB package for modelling multivariate stimulus-response data, suitable for neurophysiological data such as MEG, EEG, sEEG, ECoG and EMG. It can be used to model the functional relationship between neuronal populations and dynamic sensory inputs such as natural scenes and sounds, or build neural decoders for reconstructing stimulus features and developing real-time applications such as brain-computer interfaces (BCIs). Toolbox Paper: http://dx.doi.org/10.3389/fnhum.2016.00604 Methods Paper: https://doi.org/10.3389/fnins.2021.705621
    Downloads: 6 This Week
    Last Update:
    See Project
  • 9
    This is a Matlab software package for single molecule FRET data analysis.
    Downloads: 3 This Week
    Last Update:
    See Project
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 10
    GPLAB is a Genetic Programming Toolbox for MATLAB
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    Overhead Imagery Research Data Set (OIRDS) - an annotated data library & tools to aid in the development of computer vision algorithms
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    DOGMA is a MATLAB toolbox for discriminative online learning. It implements all the state of the art algorithms in a unique and simple framework. Examples are Perceptron, Passive-Aggresive, ALMA, NORMA, SILK, Projectron, RBP, Banditron, etc.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    nn22 Basic Neural Networks for Octave

    nn22 Basic Neural Networks for Octave

    Simple .m files, Basic Neural Networks study for Octave (or Matlab)

    --> For a more detailed description check the README text under the 'Files' menu option :) The project consists of a few very simple .m files for a Basic Neural Networks study under Octave (or Matlab). The idea is to provide a context for beginners that will allow to develop neural networks, while at the same time get to see and feel the behavior of a basic neural networks' functioning. The code is completely open to be modified and may suit several scenarios. The code commenting is verbose, and variables and functions do respect English formatting, so that code may be self explanatory. Messages to the screen are localized, both in English and Spanish, and it is really easy to add another language to the localization. If any further explanation is needed, the forum/discussion page may be of help :) Comments and suggestions are very welcome.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    Octave program which trains artificial neural networks to play backgammon through self-play.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    Density-ratio based clustering

    Density-ratio based clustering

    Discovering clusters with varying densities

    This site provides the source code of two approaches for density-ratio based clustering, used for discovering clusters with varying densities. One approach is to modify a density-based clustering algorithm to do density-ratio based clustering by using its density estimator to compute density-ratio. The other approach involves rescaling the given dataset only. An existing density-based clustering algorithm, which is applied to the rescaled dataset, can find all clusters with varying densities that would otherwise impossible had the same algorithm been applied to the unscaled dataset. Reference: Zhu, Y., Ting, K. M., & Carman, M. J. (2016). Density-ratio based clustering for discovering clusters with varying densities. Pattern Recognition. http://www.sciencedirect.com/science/article/pii/S0031320316301571
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16

    Face Recognition System

    Face Recognition System Matlab source code

    Research on automatic face recognition in images has rapidly developed into several inter-related lines, and this research has both lead to and been driven by a disparate and expanding set of commercial applications. The large number of research activities is evident in the growing number of scientific communications published on subjects related to face processing and recognition. Index Terms: face, recognition, eigenfaces, eigenvalues, eigenvectors, Karhunen-Loeve algorithm.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17

    Fingerprint Recognition System

    Fingerprint Recognition System 5.3 - Matlab source code

    The proposed filter-based algorithm uses a bank of Gabor filters to capture both local and global details in a fingerprint as a compact fixed length FingerCode. The fingerprint matching is based on the Euclidean distance between the two corresponding FingerCodes and hence is extremely fast. We are able to achieve a verification accuracy which is only marginally inferior to the best results of minutiae-based algorithms published in the open literature. Our system performs better than a state-of-the-art minutiae-based system when the performance requirement of the application system does not demand a very low false acceptance rate. Finally, we show that the matching performance can be improved by combining the decisions of the matchers based on complementary (minutiae-based and filter-based) fingerprint information. Index Terms: Biometrics, FingerCode, fingerprints, flow pattern, Gabor filters, matching, texture, verification.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Isolation Similarity

    Isolation Similarity

    aNNE similarity based on Isolation Kernel

    Demo of using aNNE similarity for DBSCAN. Written by Xiaoyu Qin, Monash University, March 2019, version 1.0 This software is under GNU General Public License version 3.0 (GPLv3) This code is a demo of method described by the following publication: Qin, X., Ting, K.M., Zhu, Y. and Lee, V.C., 2019, July. Nearest-neighbour-induced isolation similarity and its impact on density-based clustering. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, pp. 4755-4762). https://ojs.aaai.org//index.php/AAAI/article/view/4402 Bibtex format: @inproceedings{qin2019nearest, title={Nearest-neighbour-induced isolation similarity and its impact on density-based clustering}, author={Qin, Xiaoyu and Ting, Kai Ming and Zhu, Ye and Lee, Vincent CS}, booktitle={Proceedings of the AAAI Conference on Artificial Intelligence}, volume={33}, pages={4755--4762}, year={2019} }
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    KMBOX - Kernel Methods Toolbox

    KMBOX - Kernel Methods Toolbox

    A collection of kernel-based algorithms for Matlab.

    KMBOX is a collection of MATLAB programs that implement kernel-based algorithms, with a focus on regression algorithms and online algorithms. It can be used for nonlinear signal processing and machine learning.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20

    LWPR

    Locally Weighted Projection Regression (LWPR)

    Locally Weighted Projection Regression (LWPR) is a fully incremental, online algorithm for non-linear function approximation in high dimensional spaces, capable of handling redundant and irrelevant input dimensions. At its core, it uses locally linear models, spanned by a small number of univariate regressions in selected directions in input space. A locally weighted variant of Partial Least Squares (PLS) is employed for doing the dimensionality reduction. Please cite: [1] Sethu Vijayakumar, Aaron D'Souza and Stefan Schaal, Incremental Online Learning in High Dimensions, Neural Computation, vol. 17, no. 12, pp. 2602-2634 (2005). [2] Stefan Klanke, Sethu Vijayakumar and Stefan Schaal, A Library for Locally Weighted Projection Regression, Journal of Machine Learning Research (JMLR), vol. 9, pp. 623--626 (2008). More details and usage guidelines on the code website.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    Activity Recognition

    Activity Recognition

    Resources about activity recognition

    This repository is a curated collection of resources, papers, code, and summaries relating to human activity recognition/behavior recognition. It is not a single integrated software package but rather a knowledge base organizing feature extraction methods, deep learning approaches, transfer learning strategies, datasets, and representative research in behavior recognition. The repository includes links to code in MATLAB, Python, summaries of algorithms, datasets, and relevant research papers. Feature extraction method summaries (e.g. motion, sensor, vision). Deep learning for activity recognition references.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    BPL

    BPL

    Bayesian Program Learning model for one-shot learning

    BPL (Bayesian Program Learning) is a MATLAB implementation of the Bayesian Program Learning framework for one-shot concept learning (especially on handwritten characters). The approach treats each concept (e.g. a character) as being generated by a probabilistic program (motor primitives, strokes, spatial relationships), and inference proceeds by fitting those generative programs to a single example, generalizing to new examples, and generating new exemplars. The repository contains code for parsing stroke sequences, fitting motor programs, exemplar generation, classification, re-fitting, and demonstration scripts.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    CDF-TS
    This Matlab code is used for demonstration of the effect of CDF-TS as a preprocessing method to transform data. Written by Ye Zhu, Deakin University, April 2021, version 1.0. This software is under GNU General Public License version 3.0 (GPLv3) This code is a demo of method described by the following publication: Zhu, Y., Ting, K.M., Carman, M. and Angelova, M., 2021, April. CDF Transform-and-Shift: An effective way to deal with datasets of inhomogeneous cluster densities. Pattern Recognition. https://doi.org/10.1016/j.patcog.2021.107977 The preprint version can be obtained at: https://arxiv.org/abs/1810.02897
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    This project applies an interpretation of a k-NN algorithm to a library of GPS commuter data for speed prediction. The overall goal is to lay the foundation for a power management protocol for use in electric vehicles with hybrid energy storage.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Clustering by Shared Subspaces

    Clustering by Shared Subspaces

    Grouping Points by Shared Subspaces for Effective Subspace Clustering

    These functions implement a subspace clustering algorithm, proposed by Ye Zhu, Kai Ming Ting, and Mark J. Carman: "Grouping Points by Shared Subspaces for Effective Subspace Clustering", Published in Pattern Recognition Journal at https://doi.org/10.1016/j.patcog.2018.05.027
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next