Showing 65 open source projects for "vision"

View related business solutions
  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 1
    Raster Vision

    Raster Vision

    Open source framework for deep learning satellite and aerial imagery

    ...The input to a Raster Vision pipeline is a set of images and training data, optionally with Areas of Interest (AOIs) that describe where the images are labeled. The output of a Raster Vision pipeline is a model bundle that allows you to easily utilize models in various deployment scenarios.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    OpenCV

    OpenCV

    Open Source Computer Vision Library

    OpenCV (Open Source Computer Vision Library) is a comprehensive open-source library for computer vision, machine learning, and image processing. It enables developers to build real-time vision applications ranging from facial recognition to object tracking. OpenCV supports a wide range of programming languages including C++, Python, and Java, and is optimized for both CPU and GPU operations.
    Downloads: 18 This Week
    Last Update:
    See Project
  • 3
    OpenVINO

    OpenVINO

    OpenVINO™ Toolkit repository

    OpenVINO™ is an open-source toolkit for optimizing and deploying AI inference. Boost deep learning performance in computer vision, automatic speech recognition, natural language processing and other common tasks. Use models trained with popular frameworks like TensorFlow, PyTorch and more. Reduce resource demands and efficiently deploy on a range of Intel® platforms from edge to cloud. This open-source version includes several components: namely Model Optimizer, OpenVINO™ Runtime, Post-Training Optimization Tool, as well as CPU, GPU, MYRIAD, multi device and heterogeneous plugins to accelerate deep learning inferencing on Intel® CPUs and Intel® Processor Graphics. ...
    Downloads: 42 This Week
    Last Update:
    See Project
  • 4
    Albumentations

    Albumentations

    Fast image augmentation library and an easy-to-use wrapper

    Albumentations is a computer vision tool that boosts the performance of deep convolutional neural networks. Albumentations is a Python library for fast and flexible image augmentations. Albumentations efficiently implements a rich variety of image transform operations that are optimized for performance, and does so while providing a concise, yet powerful image augmentation interface for different computer vision tasks, including object classification, segmentation, and detection. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    SAHI

    SAHI

    A lightweight vision library for performing large object detection

    A lightweight vision library for performing large-scale object detection & instance segmentation. Object detection and instance segmentation are by far the most important fields of applications in Computer Vision. However, detection of small objects and inference on large images are still major issues in practical usage. Here comes the SAHI to help developers overcome these real-world problems with many vision utilities.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    GoCV

    GoCV

    Go package for computer vision using OpenCV 4 and beyond

    GoCV gives programmers who use the Go programming language access to the OpenCV 4 computer vision library. The GoCV package supports the latest releases of Go and OpenCV v4.5.4 on Linux, macOS, and Windows. Our mission is to make the Go language a “first-class” client compatible with the latest developments in the OpenCV ecosystem. Computer Vision (CV) is the ability of computers to process visual information, and perform tasks normally associated with those performed by humans. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    TorchIO

    TorchIO

    Medical imaging toolkit for deep learning

    ...Transforms include typical computer vision operations such as random affine transformations and also domain-specific ones such as simulation of intensity artifacts due to MRI magnetic field inhomogeneity.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    Colossal-AI

    Colossal-AI

    Making large AI models cheaper, faster and more accessible

    The Transformer architecture has improved the performance of deep learning models in domains such as Computer Vision and Natural Language Processing. Together with better performance come larger model sizes. This imposes challenges to the memory wall of the current accelerator hardware such as GPU. It is never ideal to train large models such as Vision Transformer, BERT, and GPT on a single GPU or a single machine. There is an urgent demand to train models in a distributed environment. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Diffgram

    Diffgram

    Training data (data labeling, annotation, workflow) for all data types

    ...Annotation is required because raw media is considered to be unstructured and not usable without it. That’s why training data is required for many modern machine learning use cases including computer vision, natural language processing and speech recognition.
    Downloads: 6 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 10
    Datasets

    Datasets

    Hub of ready-to-use datasets for ML models

    Datasets is a library for easily accessing and sharing datasets, and evaluation metrics for Natural Language Processing (NLP), computer vision, and audio tasks. Load a dataset in a single line of code, and use our powerful data processing methods to quickly get your dataset ready for training in a deep learning model. Backed by the Apache Arrow format, process large datasets with zero-copy reads without any memory constraints for optimal speed and efficiency. We also feature a deep integration with the Hugging Face Hub, allowing you to easily load and share a dataset with the wider NLP community. ...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 11
    FiftyOne

    FiftyOne

    The open-source tool for building high-quality datasets

    The open-source tool for building high-quality datasets and computer vision models. Nothing hinders the success of machine learning systems more than poor-quality data. And without the right tools, improving a model can be time-consuming and inefficient. FiftyOne supercharges your machine learning workflows by enabling you to visualize datasets and interpret models faster and more effectively. Improving data quality and understanding your model’s failure modes are the most impactful ways to boost the performance of your model. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Compute Library

    Compute Library

    The Compute Library is a set of computer vision and machine learning

    The Compute Library is a set of computer vision and machine learning functions optimized for both Arm CPUs and GPUs using SIMD technologies. The library provides superior performance to other open-source alternatives and immediate support for new Arm® technologies e.g. SVE2.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    supervision

    supervision

    We write your reusable computer vision tools

    We write your reusable computer vision tools. Whether you need to load your dataset from your hard drive, draw detections on an image or video, or count how many detections are in a zone. You can count on us.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Model Zoo

    Model Zoo

    Please do not feed the models

    FluxML Model Zoo is a collection of demonstration models built with the Flux machine learning library in Julia. The repository provides ready-to-run implementations across multiple domains, including computer vision, natural language processing, and reinforcement learning. Each model is organized into its own project folder with pinned package versions, ensuring reproducibility and stability. The examples serve both as educational tools for learning Flux and as practical starting points for building new models. GPU acceleration is supported for most models through CUDA integration, enabling efficient training on compatible hardware. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    fastai

    fastai

    Deep learning library

    fastai is a deep learning library which provides practitioners with high-level components that can quickly and easily provide state-of-the-art results in standard deep learning domains, and provides researchers with low-level components that can be mixed and matched to build new approaches. It aims to do both things without substantial compromises in ease of use, flexibility, or performance. This is possible thanks to a carefully layered architecture, which expresses common underlying...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    LRSLibrary

    LRSLibrary

    Low-Rank and Sparse Tools for Background Modeling and Subtraction

    LRSLibrary is a MATLAB library offering a broad collection of low-rank plus sparse decomposition algorithms, primarily aimed at background/foreground modeling from videos (background subtraction) and related computer vision tasks. Compatibility across MATLAB versions (tested in R2014–R2017) The library includes matrix and tensor methods (over 100 algorithms) and has been tested across MATLAB versions from R2014 onward. The algorithms can also be adapted to other computer vision or machine learning problems beyond video. Large algorithm collection: > 100 matrix- and tensor-based low-rank + sparse methods. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    CV-CUDA

    CV-CUDA

    CV-CUDA™ is an open-source, GPU accelerated library

    CV-CUDA is an open-source project that enables building efficient cloud-scale Artificial Intelligence (AI) imaging and computer vision (CV) applications. It uses graphics processing unit (GPU) acceleration to help developers build highly efficient pre- and post-processing pipelines. CV-CUDA originated as a collaborative effort between NVIDIA and ByteDance.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 18
    OpenAI-API-dotnet

    OpenAI-API-dotnet

    An unofficial C#/.NET SDK for accessing the OpenAI GPT-3 API

    A simple C# .NET wrapper library to use with OpenAI's API. More context on my blog. This is my original unofficial wrapper library around the OpenAI API.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    MLDatasets.jl

    MLDatasets.jl

    Utility package for accessing common Machine Learning datasets

    This package represents a community effort to provide a common interface for accessing common Machine Learning (ML) datasets. In contrast to other data-related Julia packages, the focus of MLDatasets.jl is specifically on downloading, unpacking, and accessing benchmark datasets. Functionality for the purpose of data processing or visualization is only provided to a degree that is special to some datasets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Flux.jl

    Flux.jl

    Relax! Flux is the ML library that doesn't make you tensor

    Flux is an elegant approach to machine learning. It's a 100% pure Julia stack and provides lightweight abstractions on top of Julia's native GPU and AD support. Flux makes the easy things easy while remaining fully hackable. Flux provides a single, intuitive way to define models, just like mathematical notation. Julia transparently compiles your code, optimizing and fusing kernels for the GPU, for the best performance. Existing Julia libraries are differentiable and can be incorporated...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    Llama Cookbook

    Llama Cookbook

    Solve end to end problems using Llama model family

    The Llama Cookbook is the official Meta LLaMA guide for inference, fine‑tuning, RAG, and multi-step use-cases. It offers recipes, code samples, and integration examples across provider platforms (WhatsApp, SQL, long context workflows), enabling developers to quickly harness LLaMA models
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    AI-Job-Notes

    AI-Job-Notes

    AI algorithm position job search strategy

    AI-Job-Notes is a pragmatic notebook for landing roles in machine learning, computer vision, and related engineering tracks. It assembles study paths, checklists, and interview prep materials, but also covers job-search mechanics—portfolio building, resume patterns, and communication tips. The emphasis is on doing: practicing with project ideas, setting up reproducible experiments, and showcasing results that convey impact.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    ViZDoom

    ViZDoom

    Doom-based AI research platform for reinforcement learning

    ...Async and sync single-player and multi-player modes. Fast (up to 7000 fps in sync mode, single-threaded). Lightweight (few MBs). Customizable resolution and rendering parameters. Access to the depth buffer (3D vision). Automatic labeling of game objects visible in the frame. Access to the list of actors/objects and map geometry.ViZDoom API is reinforcement learning friendly (suitable also for learning from demonstration, apprenticeship learning or apprenticeship via inverse reinforcement learning.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    CVPR 2025

    CVPR 2025

    Collection of CVPR 2025 papers and open source projects

    CVPR 2025 curates accepted CVPR 2025 papers and pairs them with their corresponding code implementations when available, giving researchers and practitioners a fast way to move from reading to reproducing. It organizes entries by topic areas such as detection, segmentation, generative models, 3D vision, multi-modal learning, and efficiency, so you can navigate the year’s output efficiently. Each paper entry typically includes a title, author list, and links to the paper PDF and official or third-party code repositories. The list frequently highlights benchmarks, leaderboards, or notable results so readers can assess impact at a glance. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    tvm

    tvm

    Open deep learning compiler stack for cpu, gpu, etc.

    Apache TVM is an open source machine learning compiler framework for CPUs, GPUs, and machine learning accelerators. It aims to enable machine learning engineers to optimize and run computations efficiently on any hardware backend. The vision of the Apache TVM Project is to host a diverse community of experts and practitioners in machine learning, compilers, and systems architecture to build an accessible, extensible, and automated open-source framework that optimizes current and emerging machine learning models for any hardware platform. Compilation of deep learning models in Keras, MXNet, PyTorch, Tensorflow, CoreML, DarkNet and more. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next