Showing 2 open source projects for "java split"

View related business solutions
  • Simplify IT and security with a single endpoint management platform Icon
    Simplify IT and security with a single endpoint management platform

    Automate the hardest parts of IT

    NinjaOne automates the hardest parts of IT, delivering visibility, security, and control over all endpoints for more than 20,000 customers. The NinjaOne automated endpoint management platform is proven to increase productivity, reduce security risk, and lower costs for IT teams and managed service providers. The company seamlessly integrates with a wide range of IT and security technologies. NinjaOne is obsessed with customer success and provides free and unlimited onboarding, training, and support.
    Learn More
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1

    OWL Machine Learning

    Machine learning algorithm using OWL

    Feature construction and selection are two key factors in the field of Machine Learning (ML). Usually, these are very time-consuming and complex tasks because the features have to be manually crafted. The features are aggregated, combined or split to create features from raw data. This project makes use of ontologies to automatically generate features for the ML algorithms. The features are generated by combining the concepts and relationships that are already in the knowledge base, expressed...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2

    GA-EoC

    GeneticAlgorithm-based search for Heterogeneous Ensemble Combinations

    In data classification, there are no particular classifiers that perform consistently in every case. This is even worst in case of both the high dimensional and class-imbalanced datasets. To overcome the limitations of class-imbalanced data, we split the dataset using a random sub-sampling to balance them. Then, we apply the (alpha,beta)-k feature set method to select a better subset of features and combine their outputs to get a consolidated feature set for classifier training...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.